Spatio-Temporal Wireless D2D Network With Imperfect Beam Alignment - Archive ouverte HAL Access content directly
Conference Papers Year :

Spatio-Temporal Wireless D2D Network With Imperfect Beam Alignment

(1, 2, 3, 4, 5) , (1, 2, 3, 4) , (5)
1
2
3
4
5

Abstract

In this paper, we investigate the beam misalignment impacts of a dynamic device-to-device (D2D) communication model, where both transmitters and receivers adopt beamforming (BF) by using uniform linear array (ULA). A time continuous dynamic model is adopted for this network. We use tools of stochastic geometry and the Miyazawa rate conversation law to analyse the stability condition of such a network. An analytical expression of the critical arrival rate is given under a uniform or truncated Gaussian alignment error assumption. In contrast to our previous result, where the beam alignment is perfect, our analytical and numerical results show that, if the beam alignment is not perfect, the critical arrival rate can no longer increase without limit as a function of the number of antenna elements. Closed-form expressions of the upper bounds for critical arrival rates are given for both the uniform and the truncated Gaussian misalignment models.
Fichier principal
Vignette du fichier
wcnc22.pdf (907.93 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03842031 , version 1 (07-11-2022)

Identifiers

Cite

Yibo Quan, Marceau Coupechoux, Jean-Marc Kelif. Spatio-Temporal Wireless D2D Network With Imperfect Beam Alignment. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Apr 2022, Austin, United States. pp.2346-2351, ⟨10.1109/WCNC51071.2022.9771938⟩. ⟨hal-03842031⟩
0 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More