D. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, vol.8, issue.2, p.100, 1960.
DOI : 10.1016/0022-5096(60)90013-2

G. Barenblatt, The mathematical theory of equilibrium of cracks inbrittle fracture Advances in Applied Mech, p.55, 1962.

A. Needleman, A Continuum Model for Void Nucleation by Inclusion Debonding, Journal of Applied Mechanics, vol.54, issue.3, p.525, 1987.
DOI : 10.1115/1.3173064

V. Tvergaard, Effect of fibre debonding in a whisker-reinforced metal, Materials Science and Engineering: A, vol.125, issue.2, p.203, 1990.
DOI : 10.1016/0921-5093(90)90170-8

O. Allix and P. Ladevèze, Interlaminar interface modelling for the prediction of delamination, Composite Structures, vol.22, issue.4, p.235, 1992.
DOI : 10.1016/0263-8223(92)90060-P

M. Jean-claude, S. Pierre, and T. Frederic, Ine modlisation du role des interfaces dans le comportement des composites matrice mtallique. Revue europenne des lments finis, p.573, 1994.

J. L. Chaboche, R. Girard, and A. Schaff, Numerical analysis of composite systems by using interphase/interface models, Computational Mechanics, vol.20, issue.1-2, p.3, 1997.
DOI : 10.1007/s004660050209

J. Chaboche, F. Feyel, and Y. Monerie, Interface debonding models: a viscous regularization with a limited rate dependency, International Journal of Solids and Structures, vol.38, issue.18, p.3127, 2001.
DOI : 10.1016/S0020-7683(00)00053-6

F. Lebon, R. Rizzoni, and S. Ronel-idrissi, Asymptotic analysis of some nonlinear soft thin layers, Computers & Structures, vol.82, 1929.

G. Mishuris and A. Ochsner, Transmission conditions for a soft elasto-plastic interphase betweentwo elastic materials. Archives of Mechanics, 2004.

J. Lemaitre, A course of Damage Mechanics, 1996.

L. Anand, Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large strains, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.48-51, p.5359, 2004.
DOI : 10.1016/j.cma.2003.12.068

L. Evers, D. Parks, W. Brekelmans, and M. Geers, Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation, Journal of the Mechanics and Physics of Solids, vol.50, issue.11, p.2403, 2002.
DOI : 10.1016/S0022-5096(02)00032-7

A. Jivkov, N. Stevens, and T. Marrow, A two-dimensional mesoscale model for intergranular stress corrosion crack propagation???, Acta Materialia, vol.54, issue.13, p.3493, 2006.
DOI : 10.1016/j.actamat.2006.03.030

A. Jivkov, N. Stevens, and T. Marrow, A three-dimensional computational model for intergranular cracking, Computational Materials Science, vol.38, issue.2, p.442, 2006.
DOI : 10.1016/j.commatsci.2006.03.012

B. Fabrice, D. Luc, J. Dominique, and C. Georges, Intergranular and intragranular behavior of polycrystalline aggregates Part 1: model, International Journal of Plasticity, vol.17, p.513, 2001.

B. Fabrice, F. Samuel, and C. Georges, Intergranular and intragranular behavior of polycrystalline aggregates Part 2: Results, International Journal of Plasticity, vol.17, p.537, 2001.

M. Kamaya and M. Ikatura, Simulation for intergranular stress corrosion cracking based on a three-dimensional polycrystalline model, Engineering Fracture Mechanics, vol.76, issue.3, 2009.
DOI : 10.1016/j.engfracmech.2008.11.004

T. Watanabe, An approach to grain boundary design for strong and ductile polycrystals, Res Mechanica, vol.11, p.47, 1984.

T. Watanabe and S. Tsurekawa, The control of bittleness and develipment of desirable mechanical properties in polycrystalline systems by grain boundary engineering, Acta Metallurgica, vol.47, p.4147, 1999.

L. Lim and T. Watanabe, Grain boundary character distribution controlled toughness of polycrystals ??? A two-dimensional model, Scripta Metallurgica, vol.23, issue.4, p.489, 1989.
DOI : 10.1016/0036-9748(89)90438-9

L. Lim and T. Watanabe, Fracture toughness and brittle-ductile transition controlled by grain boundary character distribution (GBCD) in polycrystals, Acta Metallurgica et Materialia, vol.38, issue.12, p.2507, 1990.
DOI : 10.1016/0956-7151(90)90262-F

D. Féron and J. Olive, Corrosion issues in light water reactors, 2007.
DOI : 10.1533/9781845693466

G. Mori, D. Scherer, S. Schwentenwein, and P. Warbichler, Intergranular stress corrosion cracking of copper in nitrite solutions. Corrosion Science, 2005.

B. Cox, Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding ??? A review, Journal of Nuclear Materials, vol.172, issue.3, p.249, 1990.
DOI : 10.1016/0022-3115(90)90282-R

P. Sidky, Iodine stress corrosion cracking of Zircaloy reactor cladding: iodine chemistry (a review), Journal of Nuclear Materials, vol.256, issue.1, 1998.
DOI : 10.1016/S0022-3115(98)00044-0

F. Marion, Mécanismes de corrosion sous contrainte par l'iode dans le Zirconium et le Zircaloy-4 Transposition aux conditions d'interaction pastille-gaine dans les réacteursréacteursà l'eau pressurisée, 1997.

S. B. Farina, G. S. Duffo, and J. Galvele, Stress corrosion cracking of zirconium and Zircaloy-4 in halide aqueous solutions, Corrosion Science, vol.45, issue.11, p.2497, 2003.
DOI : 10.1016/S0010-938X(03)00075-1

T. Kubo, Y. Wakashima, K. Amano, and M. Nagai, Effects of crystallographic orientation on plastic deformation and SCC initiation of zirconium alloys, Journal of Nuclear Materials, vol.132, issue.1, p.1, 1985.
DOI : 10.1016/0022-3115(85)90386-1

D. B. Knorr and R. Pelloux, Effects of texture and microstructure on the propagation of iodine stress corrosion cracks in zircaloy, Metallurgical Transactions A, vol.633, issue.1, p.73, 1982.
DOI : 10.1007/BF02642417

Y. H. Woo-seog-ryu, J. Kang, and . Lee, Effects of iodine concentration on iodine-induced stress corrosion cracking of zircaloy-4 tube, Journal of Nuclear Materials, vol.152, issue.2-3, p.194, 1988.
DOI : 10.1016/0022-3115(88)90327-3

G. S. Duffo and S. Farina, Diffusional control in the intergranular corrosion of some hcp metals in iodine alcoholic solutions. Corrosion Science, 2005.

R. Haddad and A. Dorado, Grain-by-Grain Study of the Mechanisms of Crack Propagation During Iodine Stress Corrosion Cracking of Zircaloy-4, Zirconium in the nuclear industry Tenth Int Symposium ASTM STP 1245, p.559, 1994.
DOI : 10.1520/STP15209S

H. Miura, T. Sakai, T. Otsuka, R. Monzen, and S. Onaka, Sliding of copper [001]-twist grain boundaries detected by shear deformation of liquid B2O3 particles on the grain boundaries, Acta Materialia, vol.48, issue.8, 1959.
DOI : 10.1016/S1359-6454(99)00467-X

L. Decker and D. Jeulin, Simulation 3D de materiaux aleatoires polycristallins La Revue de, Metallurgie-CIT, vol.96, pp.271-275, 2000.

G. Cailletaud, A micromechanical approach to inelastic behaviour of metals, International Journal of Plasticity, vol.8, issue.1, p.55, 1991.
DOI : 10.1016/0749-6419(92)90038-E

L. Méric, P. Poubanne, and G. Cailletaud, Single Crystal Modeling for Structural Calculations: Part 1???Model Presentation, Journal of Engineering Materials and Technology, vol.113, issue.1, p.162, 1991.
DOI : 10.1115/1.2903374

A. Musienko, A. Tatschl, K. Schmidegg, O. Kolednik, R. Pippan et al., Three-dimensional finite element simulation of a polycrystalline cop per specimen, Acta Mat, 2007.

O. Patrick and G. Eric, Microstructurally-based modelling of intergranular creep fracture using grain elements, Mech. of Materials, vol.26, p.109, 1997.

J. Patrick, L. Florence, and L. Clement, Deformationcorrosion interactions for Zr alloys during crack initiation: Part I: Chemical contributions, Journal of Nuclear Materials, vol.264, p.239, 1999.

F. Marion, O. Christian, G. Nathalie, H. Alain, and D. Thierry, Strain-hardening influence on iodine induced stress corrosion cracking of Zircaloy-4, Journal of Nuclear Materials, vol.373, p.59, 2008.

P. Sang-yoon, K. J. Hwan, L. M. Ho, and J. Y. Hwan, Effects of the microstructure and alloying elements on the iodine-induced stress-corrosion cracking behavior of nuclear fuel claddings, Journal of Nuclear Materials, vol.376, p.98, 2008.

R. Yun, O vozmozhnom mehanizme razrusheniya metalla v korrozionnoy srede (Concerning possible mechanism of metall fracture in corrosive environement), Izv Acad Nauk SSSR OTN, vol.4, p.53, 1954.

O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud, Distribution of normal stress at grain boundaries in multicrystals: application to an intergranular damage modeling, Computational Materials Science, vol.25, issue.1-2, p.73, 2002.
DOI : 10.1016/S0927-0256(02)00251-3

Y. Mishin and H. Chr, Grain boundary diffusion: recent progress and future research, Materials Science and Engineering: A, vol.260, issue.1-2, p.55, 1999.
DOI : 10.1016/S0921-5093(98)00978-2

J. Gilman, Mechanism of Ortho King-Band Formation in Compressed Zinc Monocrystals, Trans AIME, Journal of Metals, p.621, 1954.

U. Katsumi, Stress Corrosion Cracking of Zircaloy-2 Cladding in Iodine Vapor, J of Nuclear Sci and Tech, vol.14, p.443, 1977.

M. Fregonese, F. Lefebvre, C. Lemaignan, and T. Magnin, Influence of recoil-implanted and thermally released iodine on I-SCC of Zircaloy-4 in PCI-conditions: chemical aspects, Journal of Nuclear Materials, vol.265, issue.3, p.245, 1999.
DOI : 10.1016/S0022-3115(98)00690-4

L. Priester, Les joints grains De la théoriè a l'ingénierie, EDP Sciences, 2006.

M. Konakova and T. Yua, Stress Corrosion Cracking of Pipe Steels (Korrozionnoe rastreskivanie pod naprjazheniem trubnyh stalej) Info-da, 2004.