M. J. Beran and J. Molyneux, Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media, Quarterly of Applied Mathematics, vol.24, issue.2, pp.107-118, 1966.
DOI : 10.1090/qam/99925

D. J. Bergman, The dielectric constant of a composite material???A problem in classical physics, Physics Reports, vol.43, issue.9, pp.377-407, 1978.
DOI : 10.1016/0370-1573(78)90009-1

I. Cohen and D. J. Bergman, Clausius-Mossotti-type approximation for elastic moduli of a cubic array of spheres, Physical Review B, vol.68, issue.2, p.24104, 2003.
DOI : 10.1103/PhysRevB.68.024104

I. Cohen, Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres, J. of Mech. and Phys. of Sol, vol.52, p.9, 2004.

A. Delarue, Prévision du comportementélectromagnétiquecomportementélectromagnétique de matériaux compositesàcompositesà partir de leur mode d'´ elaboration et de leur morphologie, Thesis, Paris School of Mines, 2001.

D. Deptuck, J. P. Harrison, and P. Zawadzki, Measurement of elasticity and conductivity of a three-dimensional percolation system, Physical Review Letters, vol.54, issue.9, p.913, 1985.
DOI : 10.1103/PhysRevLett.54.913

W. T. Elam, A. R. Kerstein, and J. J. Rehr, Critical Properties of the Void Percolation Problem for Spheres, Physical Review Letters, vol.52, issue.17, pp.17-1516, 1984.
DOI : 10.1103/PhysRevLett.52.1516

D. J. Eyre and G. W. Milton, A fast numerical scheme for computing the response of composites using grid refinement, Eur. Phys, J. AP, vol.6, issue.1, 1999.

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, issue.2, pp.127-140, 1963.
DOI : 10.1016/0022-5096(63)90060-7

D. Jeulin and M. , Ostoja-Starzewski (eds) Mechanics of Random and Multiscale Microstructures, CISM Lecture Notes N ?, vol.430, 2001.

D. Jeulin, Random Structures in Physics, Contributions in Honor of Georges Matheron in the Fields of Geostatistics, Random Sets, and Mathematical Morphology. strongly anisotropic, [12] D. Jeulin, M. Moreaud, pp.183-222, 2005.
DOI : 10.1007/0-387-29115-6_9

D. Jeulin and M. , Moreaud Statistical representative volume element for predicting the dielectric permittivity of random media, Proc. CMDS 11, D

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. , Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. of Sol. and Str, vol.40, 2003.

T. Kanit, F. N-'guyen, S. Forest, D. Jeulin, M. Reed et al., Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.33-36, pp.195-3960, 2006.
DOI : 10.1016/j.cma.2005.07.022

URL : https://hal.archives-ouvertes.fr/hal-00139164

E. Kroner, Statistical Continuum Mechanics, 1972.
DOI : 10.1007/978-3-7091-2862-6

G. Matheron, The theory of regionalized variables and its applications, Paris School of Mines publications, 1971.

G. Matheron, Random sets and integral geometry, 1975.

G. Matheron, Estimating and Choosing, 1989.
DOI : 10.1007/978-3-642-48817-7

J. Michel, H. Moulinec, and P. Suquet, A computational scheme for linear and non???linear composites with arbitrary phase contrast, International Journal for Numerical Methods in Engineering, vol.58, issue.12, 2001.
DOI : 10.1002/nme.275

G. Milton, Bounds on the elastic and transport properties of two-component composites, Journal of the Mechanics and Physics of Solids, vol.30, issue.3, pp.177-191, 1982.
DOI : 10.1016/0022-5096(82)90022-9

H. Moulinec, P. Suquet, and C. R. , 1417. [23] for most volume fractions H. Moulinec, P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Acad. Sci. Paris II Comp. Methods in Appl. Mech. and Engrg, vol.318, issue.157, pp.1-2, 1994.

H. Moulinec and P. Suquet, Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties, Physica B: Condensed Matter, vol.338, issue.1-4, p.338, 2003.
DOI : 10.1016/S0921-4526(03)00459-9

M. D. Rintoul and S. Torquato, Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model, Journal of Physics A: Mathematical and General, vol.30, issue.16, p.30, 1997.
DOI : 10.1088/0305-4470/30/16/005

S. Torquato, Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties, Applied Mechanics Reviews, vol.44, issue.2, pp.37-76, 1991.
DOI : 10.1115/1.3119494

F. Willot, Y. Pellegrini, and P. , Ponte Castañeda, Localization of elastic deformation in strongly anisotropic, porous, linear materials with periodic microstructures: Exact solutions and dilute expansions, J. of the Mech. and Phys. of Sol, vol.56, issue.4, 2008.