Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Singular perturbations and Lindblad-Kossakowski differential equations

Abstract : We consider an ensemble of quantum systems whose average evolution is described by a density matrix, solution of a Lindblad-Kossakowski differential equation. We focus on the special case where the decoherence is only due to a highly unstable excited state and where the spontaneously emitted photons are measured by a photo-detector. We propose a systematic method to eliminate the fast and asymptotically stable dynamics associated to the excited state in order to obtain another differential equation for the slow part. We show that this slow differential equation is still of Lindblad-Kossakowski type, that the decoherence terms and the measured output depend explicitly on the amplitudes of quasi-resonant applied field, i.e., the control. Beside a rigorous proof of the slow/fast (adiabatic) reduction based on singular perturbation theory, we also provide a physical interpretation of the result in the context of coherence population trapping via dark states and decoherence-free subspaces. Numerical simulations illustrate the accuracy of the proposed approximation for a 5-level systems.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : François Chaplais <>
Soumis le : vendredi 15 janvier 2010 - 17:40:02
Dernière modification le : jeudi 24 septembre 2020 - 17:04:18

Lien texte intégral



Pierre Rouchon, Mazyar Mirrahimi. Singular perturbations and Lindblad-Kossakowski differential equations. IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2009, 54 (6), pp.1325 - 1329. ⟨10.1109/TAC.2009.2015542⟩. ⟨hal-00447790⟩



Consultations de la notice