Solar irradiation retrieval in Cameroon from Meteosat satellite imagery using the Heliosat-2 method
Donatien Njomo, Lucien Wald

To cite this version:

HAL Id: hal-00464747
https://hal-mines-paristech.archives-ouvertes.fr/hal-00464747
Submitted on 25 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1. Introduction

There is a growing interest all over the world for solar energy mainly because the general public became aware of the harmful effects on the environment from the use of fossil energy sources. The air and water pollution problems, ecological disruptions observed owing to the climate changes are as much consequences of the current consumer methods of energy.

Solar energy is generally considered as a well adapted energy source to developing countries because these countries receive high solar irradiation, on the order of 6 kWh/m² per day together with a daily sunshine duration the longest one, about 8h, compare to daily values of 2.5 kWh/m² for irradiation and of 3h for sunshine duration in average for the industrialized countries [1].

In the special case of Cameroon, with a triangular territory spreading itself between the latitudes 2°N and 13°N and between the longitudes 8°E and 16°E, one observes two climatic zones: a southern rainy zone, very humid, between 2°N...
and 5°N and a northern lightly arid zone, dry, occurring between the latitudes 5°N and 13°N. Measurements of global and diffuse solar irradiations were carried out in Cameroon between 1982 and 1987 using Eppley pyranometers in ten meteorological stations at least 200 km apart and distributed across the whole Cameroonian territory [1]. Costly maintenance problems and malfunction of these devices placed on irregularly visited sites ended this program of measurements only for the year 1984. The solar radiation climate of Cameroon is therefore poorly known. In addition, the large distance between stations precludes all reasonable possibility of interpolation or of extrapolation of the currently available data in a mapping study of solar irradiance of Cameroon.

Several researchers have shown the feasibility of the extraction of the global solar irradiation incident on the ground from image data from geostationary satellites such as Meteosat. A good review of these methods can be found in [6]. The geostationary satellites observe the state of the atmosphere as well as the cloud cover above the targeted surface. This information can be used to retrieve the solar irradiation reaching the ground. In the simple models, one calculates at each instant a cloud index for the atmosphere using the digital data in the visible channel of the observed site. This cloud index is then linked to a clear sky index that is defined as the ratio between the global irradiation reaching on the observed site and that which would have reached on this site if the atmosphere was clear and without clouds. One real advantage of this type of method is to be able to determine the solar irradiation across contiguous areas.

The method of retrieval on which we worked referred to as the Heliosat_2 method was developed by Wald, Rigollier, Lefèvre and Albuisson and is described in the main publications and technical reports dealing with this method [2-12] and released by these authors. We present in the following the general principle of this method as recently recalled by Wald et al. in [13, 14]. We then apply the method to the Meteosat satellite sensor is necessarily due to the variation of the apparent albedo, itself caused by the variation of radiances leaving the atmosphere as well as the cloud cover above the targeted surface. This information can be used to retrieve the solar irradiation that would be incident on this pixel if the atmosphere was perfectly clear; this is expressed as:

\[\rho_{\text{sat}}(i,j) = \frac{\pi L^{\text{sat}}(i,j)}{I_{\text{sun}}(i,j) \cos \theta(i,j)} \]

\(L^{\text{sat}}(i,j) \) being the radiation measured by the sensor of the satellite

\[\rho_{\text{cloud}}(i,j) \] is the albedo of the clouds more brilliant and is calculated from the relationship

\[\rho_{\text{cloud}}(i,j) = \frac{\rho_{\text{sat}}(i,j) \rho_{\text{atm}}(\theta, \psi)}{T(\theta, \psi)} \]

with \(\rho_{\text{sat}} \) being the reflectance more high observed by the satellite for the temporal series of images of the pixel under consideration; a value close to 0.8 should be used here

\[\rho^c(i,j) \] is the apparent albedo of the ground for a cloudless sky and is calculated with the same relationship as previously used but with the minimum value of \(\rho_{\text{sat}} \) observed by the satellite for the temporal series of illuminated images of the pixel (i,j).

The other terms are defined in the Nomenclature.

It is important to note that the cloud index \(n \) as defined here is not the same as the cloud cover of the atmosphere.

For a clear sky, the apparent albedo \(\rho^c(i,j) \) observed by the satellite is noticeably equal to the apparent albedo of the ground and the cloud index is then close to 0 (and even sometimes negative). On the other hand when the sky is covered, the cloud index \(n \) is close to 1 (sometimes lightly bigger). The cloud index \(n \) can therefore be considered as an adequate parameter for describing the attenuation of the radiation due to the atmosphere (globally speaking \(n \) would be equal to 1 minus the transmittance of the atmosphere).

The implementation of the method uses the following constraints:

For \(\rho^c(i,j) < 0.01 \) then \(n'(i,j) = 0 \).

\[-0.01 < \left[\rho^c(i,j) - \rho^c(i,j) \right] < 0.01 \]

then \(n'(i,j) = 0.0 \)

for \(\left[\rho_{\text{cloud}}(i,j) - \rho^c(i,j) \right] < 0.1 \) then \(n'(i,j) = \).

Values of the cloud index vary between -0.5 and 1.5 [12].

The cloud index \(n \) next will be linked up to the clear sky index \(K_c \) of the atmosphere that is defined as the ratio between the incident global irradiation on the considered pixel and the global irradiation that would be incident on this pixel if the atmosphere was perfectly clear; this is expressed as:

\[K_{\text{ch}} = \frac{G_s}{G_{\text{ch}}} \implies G_n = K_{\text{ch}} G_{\text{ch}} \]

The following constraints are used during the implementation of the method

2. Overview of the Heliosat_2 Method

2.1 Fundamentals of the method

The Heliosat_2 method is built around the generally accepted idea that every radiance variation observed by the satellite sensor is necessarily due to the variation of the atmospheric conditions at the observed site if the atmosphere was clear and without clouds. One real advantage of this type of method is to be able to determine the solar irradiation across contiguous areas.

The implementation of the method uses the following constraints:

\[n'(i,j) = \frac{\rho^c(i,j) - \rho^c(i,j)}{\rho_{\text{cloud}} - \rho^c(i,j)} \]
The index h in these relations stands for hourly values.

The daily global irradiation incident to the ground is calculated using the relationship

\[G_i,j = \frac{\sum_{h=1}^{N} G_h (i,j)}{\sum_{h=1}^{N} G_{ch} (i,j)} \] \hspace{1cm} (9)

where N represents the number of hours in the day during which the irradiation values were determined. Note that an assumption is made in this study that the physical processes behind this method are valid only for sun elevations \(\gamma_s \) greater than 15°.

The albedo values used in the equations above are constructed from a temporal series of satellite image data. As for the optical state of the atmosphere in clear skies, it is described in the European Solar Radiation Atlas (ESRA) project, documented in [6], where the spatial and temporal distributions of direct and diffuse irradiances are calculated together with the corresponding transmittances of a cloudless atmosphere for different values of the visibility.

2.2 Implementation of the Heliosat_2 method

The four steps implementing the Heliosat_2 method are illustrated in the simplified diagram shown below:

1 - Assessment of the reflectance observed by the satellite

The first unit “reflectance” the flowchart of which is shown below reads the Meteosat data and calibrates them using external information including calibration coefficients and the total irradiance \(I_{mec} \) in the visible channel [0.3 - 1.1\(\mu \)m] of the Meteosat sensor. The resulting radiances \(L_{sat} \) are then converted into reflectances \(\rho_{sat} \) by means of the procedure \(\text{calcul}_\text{albedo} \).

2 - Assessment of the intrinsic reflectance of the atmosphere

The second unit “atmosphere” shown below computes the radiances of the atmosphere \(L_{atm} \) for a clear sky for each pixel, by the means of the procedure \(\text{calcul}_\text{Latm} \), using the clear sky library generated by the ESRA model and external information such as the elevation \(z \) and the Linke turbidity factor \(T_L \). Then the resulting radiances \(L_{atm} \) are converted into reflectances \(\rho_{atm} \) by means of the procedure \(\text{calcul}_\text{albedo} \).

3 - Assessment of the cloud index

The third unit “cloud index”, which flowchart is presented below, computes the cloud index n. The reflectances \(\rho_{sat} \) and \(\rho_{atm} \) are inputs to the procedure \(\text{calcul}_\rho_rhoc \) that uses the elevation \(z \) and the Linke turbidity factor \(T_L \) as external information. The outputs are the reflectance \(\rho^* \) and the cloud reflectance \(\rho_{cloud} \), which are inputs to the procedure \(\text{calcul}_n \) to produce the cloud index n. This procedure calls upon external data: the ground reflectance \(\rho_g \). In cases where the map of ground albedo needs to be updated, the value \(\rho^* \) is combined with \(\rho_g \) if the sky is clear to produce a new \(\rho_g \) value.

4 - Assessment of the irradiation

The fourth unit “irradiation” shown below converts the cloud index n into clear sky index \(K_c \) by the means of the procedure \(\text{calcul}_K_c \). The clear sky index is defined as the ratio of the observed irradiation \(G_h \) to the clear sky irradiation \(G_{ch} \) that should be observed at that site and that instant. The formula proposed by Rigollier and Wald in 1999 in the first version of the model is corrected in the procedure \(\text{correction}_K_c \). The clear sky index is an input to the procedure \(\text{calcul}_Gh \) that delivers the global hourly irradiation \(G_h \).
The procedure calls upon the clear sky library and the elevation and Linke turbidity factors as external information.

The reader wishing to obtain more details on this Heliosat_2 method will consult with great profit the publications by Wald, Rigollier, Lefèvre and Albuisson quoted in References.

2.3 Data format used by the model

The Heliosat_2 method was written to be independent of the choice of the data model. However the software has been tested until now only with Meteosat images. The method uses degraded B2 images formed by pixels that are effectively pixels of original size of 5 km but with a sub-sampling of 6 in each direction. Note that only 8 slots are available per day. Computations are all made in the true solar time system. The original structure of the data as images is kept until the computation of the cloud index. Then, another structure is adopted: for each pixel, a time-series of all cloud indices for a full year is stored. This change of structure appears in the software dealing with the cloud index for the computations of clearness index and irradiation. The irradiation output is obtained for a single pixel in the software.

3. Application of the Heliosat_2 method to Meteosat images of Cameroon

The Environmental Energy Technologies Laboratory at the University of Yaounde I in Cameroon recently acquired from the European Organization for the Exploitation of Meteorological Satellites (Eumetsat) 540 numerical «high resolution» Meteosat images covering the Central Africa region (5°E - 25°E; 10°S - 20°N) and consisting of 15 slots in each of the spectral bands VIS, IR, WV for the average day of every month of the year 1999. Among these images, only 180 of them in the visible channel are consistent with the Heliosat method. Such a temporal series proves itself insufficient for an accurate implementation of the method. We therefore chose to carry out our irradiation calculations for the Cameroon territory using the B2 images of the year 1997 available from the Modeling and Remote Sensing Group of the Ecole des Mines de Paris based at of Sophia Antipolis. The monthly variations of daily global irradiations in Cameroon extracted from Meteosat satellite images are presented in the figures that follow.

Figure 1: Irradiance estimates for all the stations
4. Discussion and conclusion

Inspection of the results from this study leads to the following observations:

● A comparison of the computed results coming from the Heliosat_2 method with measurements of solar irradiations currently available at Yaounde (3°52’ N; 11°32’ E) and Garoua (9°20’ N; 13°23’ E) shows that the monthly variations of the global irradiation incident on the site of Garoua as retrieved with the Heliosat method compare well with the measured values; on the other hand the correspondence is less robust for the site of Yaounde. The reason probably comes from the fact that the site of Garoua is a sahelian type and therefore presents a nearly lambertian surface and the atmosphere above this region is uniformly dry, whereas the site of Yaounde is a forest type layered with a humid and persistently cloudy atmosphere.

● The empiricism of the Linke turbidity factor, that besides is determined for the single value 2 of the air mass number, remains a limiting factor for the Heliosat method. The quality of the method would therefore be substantially improved if one used an atmospheric defined transmittance in the visible spectral band that had been validated before using for example a line by line radiative transfer code.

● The quality of the Heliosat_2 method also would have clearly been improved if it was implemented with all the «high resolution» HR Meteosat images available every half an hour in the day. The calculation of the daily mean values would be significantly more accurate.
References

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B<sub>h</sub></td>
<td>hourly value of the incident direct solar radiation</td>
</tr>
<tr>
<td>D<sub>h</sub></td>
<td>hourly value of the incident diffuse solar radiation</td>
</tr>
<tr>
<td>G<sub>h</sub></td>
<td>hourly value of the incident global solar radiation</td>
</tr>
<tr>
<td>I<sub>0</sub></td>
<td>solar constant = 1367 W.m<sup>-2</sup></td>
</tr>
<tr>
<td>I<sub>met</sub></td>
<td>extra-atmospheric value of the solar radiation in the visible band for Meteosat sensor</td>
</tr>
<tr>
<td>K<sub>c</sub></td>
<td>clear sky index</td>
</tr>
<tr>
<td>L</td>
<td>radiance</td>
</tr>
<tr>
<td>n</td>
<td>cloud index</td>
</tr>
<tr>
<td>S<sub>λ</sub></td>
<td>Meteosat sensor spectral response in the visible band</td>
</tr>
<tr>
<td>T<sub>L</sub></td>
<td>Linke turbidity factor</td>
</tr>
<tr>
<td>T</td>
<td>atmospheric transmittance</td>
</tr>
</tbody>
</table>

Greek Symbols :

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>correction for the variation of the Sun-Earth distance</td>
</tr>
<tr>
<td>ρ</td>
<td>apparent albedo observed by the Meteosat sensor</td>
</tr>
<tr>
<td>θ<sub>s</sub></td>
<td>sun zenithal angle</td>
</tr>
<tr>
<td>θ<sub>v</sub></td>
<td>view angle</td>
</tr>
<tr>
<td>ψ</td>
<td>difference between sun and satellite azimuth angles</td>
</tr>
</tbody>
</table>

Subscripts :

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>extra-atmospheric value</td>
<td></td>
</tr>
<tr>
<td>ground value</td>
<td></td>
</tr>
<tr>
<td>clear sky value</td>
<td></td>
</tr>
<tr>
<td>cloudy sky value</td>
<td></td>
</tr>
<tr>
<td>spectral value</td>
<td></td>
</tr>
</tbody>
</table>