A new method for estimating solar energy resource
Armel Oumbe, Philippe Blanc, Thierry Ranchin, Marion Schroedter Homscheidt, Lucien Wald

To cite this version:
Armel Oumbe, Philippe Blanc, Thierry Ranchin, Marion Schroedter Homscheidt, Lucien Wald. A new method for estimating solar energy resource. ISRSE 33, May 2009, Stresa, Italy. paper 773. hal-00468886

HAL Id: hal-00468886
https://hal-mines-paristech.archives-ouvertes.fr/hal-00468886
Submitted on 31 Mar 2010
Abstract – This paper presents the first prototype of a new method called Heliosat-4 for assessing solar surface irradiance. The Heliosat-4 method is based on the radiative transfer model libRadtran and benefits from advanced products derived from recent Earth Observation missions. It will provide direct and diffuse components and spectral distribution of solar surface irradiance every 3 km and ¼ h over Europe and Africa. The outcomes of this first prototype of the method are compared to ground measurements made at 8 stations in Europe and Northern Africa. The results show that RMSE attained by the Heliosat-4 method is fairly similar to that attained by current methods. A large overestimation is observed. Nevertheless these tests are very encouraging.

Keywords: solar irradiance, atmospheric optics, radiative transfer, cloud, Envisat, MetOp, MSG.

1. NOMENCLATURE

\[z, z_0, z_H \] altitude (km) above mean sea level
\[I_0, I_{D}, I_{D} \] irradiance at the top of the atmosphere (W m\(^{-2}\))
\[I_{global}, I_{diffuse} \] global, direct, diffuse irradiance on horizontal plane (W m\(^{-2}\))
\[I_{global, clearsky}, I_{global, cloudy} \] clear sky and cloudy sky (W m\(^{-2}\))
\[T_{cloud, albedo} \] cloud extinction and ground albedo contribution (unitless)
\[A(z), A_g(z) \] attenuation coefficients of the atmosphere for global, direct irradiance (unitless)
\[\alpha, \alpha_0 \] parameters of the double-\(\varepsilon\) fitting function (m\(^{-1}\))
\[\rho \] ground albedo (unitless)
\[\rho_{opt}, \rho_{opt, clearsky}, \rho_{opt, cloudy} \] optical depths for modified Lambert-Beer relation (unitless)
\[t_{opt, cloudy}, t_{opt, clearsky} \] cloud optical depth (unitless)
\[n_{550nm}, \alpha \] aerosol optical depth at 550 nm (unitless), Angstrom coefficient (unitless)
\[\text{vis} \] visibility at ground level (km)
\[\delta \] solar zenith angle (°)

2. INTRODUCTION

World energy consumption is sharply rising (Martin-Amouroux, 2004) when we are witnessing a gradual depletion of fossil resources. Other sources of energy should be better exploited to meet demand. Among them, solar energy offers a great potential. Solar energy resources have been for long estimated from measurements made within meteorological stations networks (WMO, 1981). However, such networks do not offer a dense nor sufficient coverage to provide an accurate description of spatial variations of the resource. As an alternative, several methods have been developed in the past years to assess the solar surface irradiance (SSI) from images taken by satellites (Rigollier et al., 2004). Most current methods are inverse, i.e. the inputs are satellite images whose digital counts result from the ensemble of interactions of radiation with the atmosphere and the ground during the downward and upward paths of the radiation. The authors believe from experience that limits of such methods are presently reached in terms of accuracy, except for those are specialized to a specific region using empirical fittings (Polo et al., 2006). Consequently, a new paradigm is studied based on a direct modeling. This would permit to deliver knowledge on direct, diffuse components and spectral distribution, which is seldom offered by current methods.

Recent satellite missions such as Meteosat Second Generation, Envisat and MetOp combined with recent data assimilation techniques into atmospheric modeling offer a favorable context for the design and exploitation of a method based on a direct modeling. In this approach, the various optical processes occurring along the path of the light from the outer space towards the ground are modeled by the means of a radiative transfer model (RTM).

In this work, we propose a prototype of a direct method called Heliosat-4 for assessing the SSI; it exploits advanced products derived from recent satellite data and is based on a radiative transfer model. Our final goal is to integrate it into an operational system for providing operationally direct and diffuse components and spectral distribution of the SSI for the usable Meteosat image pixels (9 million pixels, 3 km resolution at nadir of the satellite and each quarter-hour). This SSI data will be disseminated by the means of the SoDa Service (www.soda-iss.com, Gschwind et al. 2006). This communication deals with the SSI integrated over the spectral interval [0.3 μm, 4 μm].

3. METHOD

3.1 Background

The Heliosat-4 method is under joint development by the DLR (German Aerospace Center) and MINES ParisTech. The libRadtran RTM has been selected for this development. libRadtran was originally developed for modelling UV irradiance. Its accuracy has also been demonstrated for actinic fluxes and total irradiance (www.libradtran.org, Mueller et al., 2004).

There are many inputs to RTMs. Oumbe et al. (2008) performed an inventory of the variables (e.g., cloud) and their attributes (e.g., optical depth) available in an operational mode and assessed to
which degree the uncertainty on an attribute of a variable – including the absence of value – leads to a variation on the SSI. They found a number of significant inputs:

- solar zenith angle (θs)
- number and the day of the year,
- cloud optical depth (τc),
- cloud type,
- water vapor amount,
- aerosol optical depth and its spectral variation (τaer550nm α),
- aerosol type,
- ground albedo (ρ) and its spectral variation,
- atmospheric profile,
- ground altitude (z).

Another result of this sensitivity analysis is that the influences of vertical position and the geometrical thickness of clouds in the atmosphere are negligible. Thus, the SSI I for a cloudy atmosphere can be considered as equal to the product of the irradiance obtained under a clear sky (f_{clearsky}) and a function of the cloud extinction and ground albedo contribution (T_{cloud+albedo}):

\[
I \approx f_{\text{clearsky}} T_{\text{cloud+albedo}}
\]

(1)

3.2 Scheme

For our objectives, look-up tables can be used (Gimeno-Ferrer and Hollmann, 2002). The look-up tables are cumbersome to compute and then to implement in the routine operations. If new descriptions of atmospheric properties are available, the look-up tables should be recomputed for the new conditions and re-implemented in the processing software. They have the advantage of making the subsequent operations much faster. Here, we have opted for another approach by using libRadtran and a combination of simpler approached models that run fast enough for our purposes.

Considering Eq. 1 and taking into account that i) the variations with the altitude z of the term T_{cloud+albedo} are negligible and ii) the cloud parameters may be known in an operational mode every 15 min and 3 km and the clear-sky parameters only every day and 50 km, the concept of the Heliosat-4 method is that the SSI I can be computed by the products of three models as follows:

\[
I = f_{\text{clearsky}} \left(f(z) T_{\text{cloud+albedo}} \right)
\]

(2)

where each model differs from the other with respect to space and time scales. The first model computes the clear-sky irradiance f_{clearsky}; it takes into account all atmospheric parameters but clouds and ground albedo and focuses the bulk of computation resources. The second model f(z) corrects for ground elevation for a given site and the third model takes into account the clouds extinction and the contribution of the ground albedo to the SSI (T_{cloud+albedo}). The second and third models are much simpler and run faster than the first one. A sketch of the scheme is given in Fig. 1.

3.3 The clear-sky part of the scheme

The Heliosat-4 method exploits a clear-sky model which is in this case the RTM libRadtran combined with the modified Lambert-Beer (MLB) relation proposed by Mueller et al. (2004). The MLB relation is a fitting function modelling the influence of the solar zenith angle in order to save computing time:

\[
f_{\text{clearsky}}(θs) = I_0 \exp(-τ_s / \cos θ_s)
\]

(3)

\[
I_0^{\text{clearsky}}(θs) = I_0 \exp(-τ_{sg} / \cos θ_s)
\]

where τ_s, τ_{sg} and α, b are determined from the knowledge of the global and direct irradiances at solar zenith angles equal to 0° and 60°. This knowledge is obtained by two runs of libRadtran.

Inputs to libRadtran are the optical depth and type of the aerosols, the water vapour and ozone content, which are themselves assessed from data provided by the satellites Envisat and MetOp (Holzer-Popp et al. 2002; Schroedter-Homscheidt et al. 2008). These inputs are provided for cells of 50 km in size.

\[\begin{align*}
\text{Atmospheric parameters} & \quad 50 \text{ km x} 50 \text{ km resolution, every day} \\
\text{Radiative Transfer model (LibRadtran)} & \quad 3 \text{ km x} 3 \text{ km resolution, every 15 min} \\
\text{Clouds} & \quad \text{ NO CLOUD COVERAGE} \\
\text{Ground albedo} & \quad \text{ Global, direct, diffuse and spectral distribution of irradiances (clear sky and null albedo)} \\
\text{Reflections between ground and atmosphere} & \quad \text{ Global, direct, diffuse and spectral distribution of all sky irradiances}
\end{align*}\]

Figure 1. Heliosat-4 scheme

3.4 Double-z fitting function for vertical profile of irradiance

The mean terrain altitude for each cell, z₀, is also an input to libRadtran. The altitude of the terrain has a large influence on the irradiance and it is necessary to take into account the actual altitude of the site of interest in the assessment of the clear-sky irradiance and consequently of the SSI. It would be too time-consuming to run libRadtran for each altitude. Given the fact that libRadtran can run with two altitudes (z₀ and z_H) as inputs in one call, we have designed the use of the double-z fitting function described below to perform the altitude correction. Knowing values of clear-sky irradiances at two different altitudes f_{clearsky}(z₀) at z₀ and f_{clearsky}(z_H) at z_H this fitting function allows to determine clear-sky irradiances at other altitudes. It is called “double-z fitting function” because it needs as inputs the clear-sky irradiances at two different altitudes described below to perform the altitude correction.

\[
f_{\text{clearsky}}(z) = I_0 (1 - A(z))
\]

(4)

\[
I_0^{\text{clearsky}}(z) = I_0 (1 - A_0(z))
\]

We assume that A(z) and A₀(z) have the following forms:
3.5 Clouds extinction and ground albedo contribution

Since the geometrical thickness of clouds has a negligible effect on the SSI, it is set up to a fixed value of 1 km. Then, we assume that the irradiance passing through the clouds is divided into downward and upward irradiances. Therefore, we use the well-known two-stream and delta-eddington approximations (Paris and Justus, 1988) to model the extinction due to clouds:

\[
\begin{align*}
I_b &= I_b^{\text{clearsky}} \exp(-\sigma_c \cos \theta) \\
I_D &= I_D^{\text{clearsky}} + R_c \rho_{\text{cloud}} + (I_b - I_D) I_b^{\text{clearsky}}
\end{align*}
\]

(9)

where \(R_c\) is the irradiance reflected by the cloud and is given by:

\[
R_c = (r_D I_D^{\text{clearsky}} + r_b I_b^{\text{clearsky}}) / (1 - r_D \rho_{\text{cloud}})
\]

(10)

The effective diffuse and the direct-to-diffuse transmissivities and reflectivities –respectively \(r_D, I_D\) and \(r_b, I_b\) – are determined from the radiation boundary conditions (Paris and Justus, 1988). The ground albedo \(\rho_{\text{cloud}}\) is computed previously in the clear-sky part of the scheme.

If we consider that an infinite series of reflection and scattering takes place between the ground and the atmosphere, the SSI computed for a null ground albedo can be corrected for the actual ground albedo \(\rho\):

\[
I(\rho) = I(\rho=0) / (1 - \rho \rho_{\text{cloud}})
\]

(11)

where \(\rho_{\text{cloud}}\) is the spherical albedo for the cloudy atmosphere. The input to the cloudy part of the scheme is the cloud optical thickness derived from an appropriate processing of the Meteosat images made at DLR. Presently, the ground albedo is set arbitrarily; a database should be found for operation.

4. COMPARISON BETWEEN RESULTS AND STATION MEASUREMENTS

We have applied the Heliosat-4 method to data provided by the DLR for the year 2004. Values of irradiance for every quarter-hour were averaged to yield hourly means of irradiance. These assessed SSI are compared to measurements performed by pyranometers at 8 meteorological stations (Table 1). We only use measurements with irradiance greater than 50 W m\(^{-2}\). For lower values, the measured irradiance is mainly of diffuse nature and is influenced by local conditions, including orography and the presence of nearby obstacles. By removing these values, we ensure better conditions for understanding the results at this preliminary stage. For the same reason, we avoid measurements taken at solar zenith angle greater than 70°. Above this angle, atmospheric parameters are not well estimated.

Table 1. Stations used for validation

<table>
<thead>
<tr>
<th>Site</th>
<th>Station</th>
<th>Country</th>
<th>Latitude / Longitude (°)</th>
<th>Altitude (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carpentras</td>
<td>France</td>
<td>44.05 / 5.05</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>Dresden</td>
<td>Germany</td>
<td>51.13 / 13.78</td>
<td>214</td>
</tr>
<tr>
<td>3</td>
<td>Freiburg</td>
<td>Germany</td>
<td>48.04 / 7.87</td>
<td>241</td>
</tr>
<tr>
<td>4</td>
<td>Geneva</td>
<td>Switzerland</td>
<td>46.25 / 6.13</td>
<td>407</td>
</tr>
<tr>
<td>5</td>
<td>Ispra</td>
<td>Italy</td>
<td>45.82 / 8.60</td>
<td>191</td>
</tr>
<tr>
<td>6</td>
<td>Payerne</td>
<td>Switzerland</td>
<td>46.81 / 6.94</td>
<td>492</td>
</tr>
</tbody>
</table>
The discrepancies between the SSI measured and assessed are computed. Table 2 displays the mean value of the SSI measured at ground level, the bias, i.e., the mean difference, the root mean square error (RMSE) and the correlation coefficient between the two series of values. The bias is positive for all sites. This means that the method over-estimates the SSI in general. The bias may be small as in the case of Tamarrasset (station 7) or large as in the case of Vaulx-en-Velin (station 8). The correlation coefficient is large in all cases: the changes in radiation are well reproduced by the Heliosat-4 method. The root mean square error ranges from 70 W m\(^{-2}\) to 133 W m\(^{-2}\); in relative values, it is close to 20 % in all cases, except for Tamarrasset for which it is 10 %. The solar zenith angle has an important impact on quality of the estimation: the greater the solar zenith angle, the greater the relative bias and RMSE. A similar comparison is under way for direct irradiance.

Table 2. Performance of Heliosat-4 for global SSI. RMSE means root mean square error, \(\bar{n}\) is the number of observations and \(\text{Corr}\) means correlation coefficient.

<table>
<thead>
<tr>
<th>Site Num</th>
<th>Site</th>
<th>Mean (W m(^{-2}))</th>
<th>Bias (W m(^{-2}))</th>
<th>RMSE (W m(^{-2}))</th>
<th>Corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2627</td>
<td>566.5</td>
<td>37.7 (7 %)</td>
<td>87.9 (15 %)</td>
<td>0.948</td>
</tr>
<tr>
<td>2</td>
<td>1916</td>
<td>451.0</td>
<td>58.2 (13 %)</td>
<td>111.1 (25 %)</td>
<td>0.901</td>
</tr>
<tr>
<td>3</td>
<td>936</td>
<td>528.7</td>
<td>81.5 (15%)</td>
<td>121.0 (23 %)</td>
<td>0.932</td>
</tr>
<tr>
<td>4</td>
<td>2427</td>
<td>491.8</td>
<td>23.0 (5 %)</td>
<td>106.5 (22 %)</td>
<td>0.917</td>
</tr>
<tr>
<td>5</td>
<td>2409</td>
<td>499.9</td>
<td>59.6 (12 %)</td>
<td>101.4 (20 %)</td>
<td>0.942</td>
</tr>
<tr>
<td>6</td>
<td>1985</td>
<td>556.0</td>
<td>61.8 (11 %)</td>
<td>110.0 (20 %)</td>
<td>0.918</td>
</tr>
<tr>
<td>7</td>
<td>2747</td>
<td>714.9</td>
<td>15.5 (2 %)</td>
<td>69.4 (10 %)</td>
<td>0.966</td>
</tr>
<tr>
<td>8</td>
<td>1605</td>
<td>542.4</td>
<td>87.1 (16 %)</td>
<td>132.5 (24 %)</td>
<td>0.917</td>
</tr>
</tbody>
</table>

5. CONCLUSION

Compared to current methods (Rigollier et al., 2004), the Heliosat-4 method should not only produce total global irradiance, but also direct and diffuse components, and spectral distribution. First results show that the RMSE attained by the Heliosat-4 method is fairly similar to that attained by current methods. These tests are very encouraging. A strong drawback is the overestimation. Several causes may be invoked: the ground albedo was set to an arbitrary value that may not be the correct one, the spectral variation of the aerosol optical depth is not taken into account as we used only \(\tau_{aer550nm}\), as well as the aerosol type. It is also believed that a better modeling of the cloud extinction can be done if cloud effective radii are known with subsequent more accurate assessments.

This first prototype of the Heliosat-4 method shows promises. It demonstrates that principles are sound. There is space for improvements and the authors are confident that the Heliosat-4 method will reach a satisfactory quality.

REFERENCES

References from Journals

References from Websites

ACKNOWLEDGEMENTS

This work was partly done with a support of the ADEME, the French agency for energy.