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We propose a quantum feedback scheme for the preparation and protection of photon number
states of light trapped in a high-@) microwave cavity. A quantum non-demolition measurement
of the cavity field provides information on the photon number distribution. The feedback loop is
closed by injecting into the cavity a coherent pulse adjusted to increase the probability of the target
photon number. The efficiency and reliability of the closed-loop state stabilization is assessed by
quantum Monte-Carlo simulations. We show that, in realistic experimental conditions, Fock states
are efficiently produced and protected against decoherence.

PACS numbers: 42.50.Dv, 02.30.Yy, 42.50.Pq

I. INTRODUCTION

It is now possible to realize ideal quantum measure-
ments on individual quantum objects, for instance atoms,
ions and photons. Beyond being a tool to monitor the
system’s evolution, projective quantum measurements
can be used to prepare it in specific quantum states. For
instance, an ideal quantum non-demolition (QND) mea-
surement of a field’s photon number projects it onto a
photon-number (Fock) state [1]. However, due to the
basic quantum indetermination of the measurement out-
come, measurement-induced state generation is not de-
terministic. Quantum feedback control techniques [2]
make it possible to overcome this limitation and to pro-
duce quantum states on demand. These techniques gen-
erally combine weak quantum measurements with a real-
time correction of the system’s state depending on the
classical information extracted from the measurements.
Beyond preparation of specific states, these feedback
schemes can also protect them from decoherence, result-
ing from the coupling of the system with its environment.

In this paper, we propose a quantum feedback scheme
for the on-demand preparation of Fock states stored in
a high-quality superconducting microwave cavity and for
their protection against decoherence. This scheme is de-
signed to operate with an existing cavity-QED set-up [3].
The feedback loop uses three steps. We first extract infor-
mation on the photon number distribution with a single
circular Rydberg atom by a QND process. This atom
interacts dispersively with the cavity field and does not
exchange energy with it, but experiences a light shift pro-
portional to the photon number. The measurement of
this shift, with the help of a Ramsey interferometer, pro-
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vides information on the field intensity. It modifies the
field state accordingly through the quantum projection.
This information is, in the second step, used to estimate
the new cavity field state through a quantum filtering
process [4, 5]. In the third step, we correct the field
state, using a coherent field pulse injected in the cavity.
The feedback law used to calculate the amplitude of this
pulse is chosen by adapting to this discrete situation the
Lyapunov-based techniques proposed in Ref. [6]. These
three steps represent the three basic components of any
feedback loop: a sensor, a controller and an actuator.
In contrast to classical closed-loop systems, we use here
a quantum sensor. However, both controller and actua-
tor remain classical. By iterating the feedback loop, we
steer the cavity towards any target Fock state. We also
efficiently stabilize it against cavity decay.

Recently, a similar feedback scheme to generate Fock
states of light in an optical cavity has been proposed [7].
It is based on a continuous monitoring of the mean num-
ber of photons. Instead, we propose here to use a discrete
QND measurement followed by a quantum filtering pro-
cess providing complete information on the field’s den-
sity matrix. This precise knowledge of the field’s state
gives us a much better insight into the feedback action.
It could also be an asset in other feedback schemes re-
quiring, for instance, information on the field’s phase in
addition to its intensity.

The paper is organized as follows. In Sec. II, we de-
scribe the elements of the set-up and give realistic experi-
mental parameters. We present the quantum-mechanical
operators describing the evolution of the cavity state un-
der measurement, decoherence and pulse injection. Sec-
tion III is devoted to a detailed analysis of the quantum
filter and of the feedback law in an ideal situation. We
first present the main elements of the feedback loop and
describe the tuning of the controller gain. We give qual-
itative arguments showing that the proposed strategy is
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Figure 1: Proposed quantum feedback scheme adapted to a
microwave cavity QED set-up. C': high-Q microwave cavity,
B: box producing Rydberg atoms, R; and Rs: low-Q Ram-
sey cavities, D: atomic field-ionization detector, S and S’:
microwave sources coupled to C' and R’s, respectively. In a
quantum filtering process, a real-time control system analyzes
the results of QND measurements of the cavity field and com-
putes the amplitude of a control injection pulse.

stable. The detailed mathematical proof of convergence
and stability, relying on stochastic Lyapunov techniques
will be published elsewhere [8]. We finally present quan-
tum Monte Carlo simulations of closed-loop trajectories
of the cavity field exhibiting the feedback performances.
In section IV, we take into account the known experi-
mental imperfections of the existing set-up. We modify
accordingly the feedback algorithm and present extensive
simulations of its operation. We conclude in Sec. V.

II. EXPERIMENTAL SET-UP

Our quantum feedback algorithm is designed for the
ENS microwave cavity QED set-up [3, 9]. Its compo-
nents are depicted in Fig. 1. The microwave field to be
controlled is confined in an ultra-high @) superconducting
cavity C' (damping time e,y = 0.13 s). Rydberg atoms,
flying one by one at 250 m/s across the cavity mode and
dispersively interacting with its field, are used as QND
probes of light [1]. They are prepared in a superposi-
tion of two circular Rydberg states |e) and |g) (principal
quantum numbers 51 and 50, respectively) in the low-Q
cavity Ry, driven by the source S’, in which they expe-
rience a resonant 7/2-pulse. In the Bloch sphere repre-
sentation, the spin corresponding to the two-level atomic
system then points along the Oz direction in the equa-
torial plane (states |e) and |g) correspond to north and
south poles of the sphere, respectively; we use a frame
rotating at the atomic frequency).

The light shifts experienced by the non-resonant |g) —
le) atomic transition in the cavity field result in a phase
shift for the atomic state superposition. At the cavity
exit, the atomic spin points along a direction in the equa-

torial plane at an angle ®(n) with the Ox axis, correlated
to the photon number n. The dephasing angle ®(n) can
be controlled by adjusting the atom-cavity detuning ¢
and the interaction time. In the large atom-cavity detun-
ing regime, it is a linear function of n: ®(n) ~ (Q3/4)n,
where Qo/2m = 49 kHz is the vacuum Rabi frequency.
For the intermediate detuning values used in the experi-
ments, it is a more complex, albeit perfectly known grow-
ing function of n. A second 7/2 Ramsey pulse in Rs
(phase ¢r with respect to that of the pulse in Ry) fol-
lowed by the atomic detection (in the {le),|g)} basis)
by the detector D amounts to a detection of the atomic
spin along an axis at an angle ¢r with Ox. It provides
information on the cavity field intensity.

Atoms are sent in the set-up at typical 250 ps time in-
terval, much shorter than the cavity damping time. Note
that such a macroscopic time interval is well adapted to
elaborate feedback strategies since we have ample time
to compute the state estimator and the feedback law be-
tween two atomic detections. When no feedback action
is performed, the information provided by a few tens of
atoms results in a measurement of the dephasing angle
®(n) and, hence, in a projective QND measurement of
the photon number n [1, 10].

We are interested here instead in the ambiguous infor-
mation provided by a single atomic detection. Detection
of the atomic state in D projects the field, described ini-
tially by the density matrix p, onto a new state pproj-
Depending on the detected atomic state, |s) = |e) or |g),
the back-action of the quantum measurement on the field
is described by

Mg p M]
poros = — (1)
Tr (MS P Ms>

where the operators M, are given by

O(N
Mgy = cos <7¢R +2 ( )> ) (2a)

O(N
M, = sin <¢R+()> . (2b)

Here, N = a'a is the photon number operator with a
and a' the photon annihilation and creation operators,
respectively. The measurement operators M, are diag-
onal in a photon-number basis (as is N). They thus
preserve Fock states, illustrating the QND nature of the
measurement. The projected state (1) is normalized by
the probability Ps = Tr (MSpM i ) of detecting the atom
in state [s).

The cavity field can also be manipulated by injecting
into the mode a coherent field pulse generated by the
resonant microwave source S. Its action is described by
the displacement operator D(a) = exp(aa’ —a*a), where
« is the complex amplitude of the injected field. The
cavity field after displacement thus reads

paisp = D(@) p D(~a). (3)



A proper analysis of the feedback scheme requires to
take into account all known imperfections of the experi-
mental set-up. Besides projective measurement (1) and
coherent evolution (3), the cavity state also evolves due
to decoherence. The field is coupled to a reservoir at
non-zero temperature (T = 0.8 K), and its dynamics is
described by the master equation [11]

dp
dt
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where k = 1/T¢,y is the cavity decay rate and ng, = 0.05
the equilibrium thermal photon number.

Moreover, the circular Rydberg state preparation is a
non-deterministic Poisson process. We perform a pulsed
excitation from a continuous thermal beam of Rubidium
atoms, preparing atomic samples at a T, = 85 us time
interval. The mean number of circular atoms per sample
is 7, ~ 0.3 (leading to an average time between atoms
of 250 us). The atomic time of flight between C and
D is 350 ups, corresponding to a delay of d =4 atomic
samples. The probability for detecting an atom present
in a sample is 79 &~ 0.8 due to finite detection efficiency
in D. Finally, non-ideal atomic state resolution of the
field-ionization detector and finite contrast of the Ramsey
interferometer introduce a probability of erroneous state
assignation of 7y ~ 0.1.

IIT. IDEALIZED EXPERIMENT

In order to describe the essential elements of the feed-
back scheme in a simple context, we first consider in
this Section an idealized experiment with no cavity decay
(k = 0), a deterministic atomic preparation (7, = 1), no
detection delay (d = 0), and a perfect atomic detection
(na = 1 and 7t = 0).

A. Quantum filter

The quantum filtering procedure [4, 5] provides us with
an estimate of the field state by using all available infor-
mation. Right after detection of atom number &k and
before injection of the corresponding control, it includes
the initial state of the field pg, information obtained from
all k& atoms detected so far (labelled i = 1...k) and all
coherent field injections performed in the former feed-
back loops (1 to k—1). Each of the elementary pro-
cesses (atomic detections and displacements) can be rep-
resented by super-operators acting on the field’s density
matrix. Let us note M, that associated to the detection
of atom 7 and D; that corresponding to the displace-
ment performed in the i*" iteration of the feedback loop.

Therefore, after detecting atom k, the state of the field is

k-1
pr = My, (H DiMi> Po- (5)

i=1

Here and in the following, all super-operator products are
ordered by decreasing indices. Note that the expression
(5) can be computed iteratively from the recurrence

Pr+1 = My 1Dy pg, (6)

setting Dy = 1. By applying this filter recursively at
each cycle, we get a reliable real-time estimate of the
field state.

Based on Egs. (1) and (3), the super-operators are de-
fined as

My, pM].
sz = IT ) (7)
Tr (M, oM,
D;p = D(a)pD(—ai). (8)
th

Here, s; = g or e depending on the outcome of the ¢
atomic measurement. The control amplitude «; is ad-
justed after each atom detection according to the feed-
back law described in the next subsection.

We choose to prepare initially the cavity in a coherent
state with a mean photon number equal to the target
value n..,. The phase of this field is used as a refer-
ence. As a consequence, its amplitude oy = \/ﬁmg is
real. The phase ¢r and the operator ®(V), defining the
measurement super-operators M; through (2), should be
adjusted to optimize the quantum filter (6). On the one
hand, the mean dephasing angle per photon ¢ (estimated
in the useful range of n values) should be large in order to
resolve adjacent photon numbers. On the other hand, the
measurement should lift the ambiguity between a large
range of possible photon numbers from 0 to some n,,.,,
determined by the spread of the initial coherent field.
Due to the oscillating nature of the measurement opera-
tors M,, this sets a maximum value of ¢ of the order of
T/ M-

Finally, we need to optimally distinguish n,,, from
Ny, = 1. This is achieved by setting the Ramsey phase
¢r so that (¢r + P(n...))/2 = m/4. This setting cor-
responds to a maximal variation of the atomic state de-
tection probabilities around n.,,. In other words, we set
the atomic Ramsey interferometer at mid-fringe when the
cavity contains n.,, photons.

B. Feedback control

The distance between p; and the target Fock state de-
scribed by a density operator p,., = |N..) (.| can be
conveniently defined as

Vipr) =1 —Tr (prpras) =1 — F(pr), (9)



where F(p) = Tr (p p..e) is the fidelity of a state p with
respect to the target state p..,. The function V(p) rep-
resents a natural choice for the Lyapunov function [6]
used to study the stability properties of the quantum con-
troller. This study is presented in more detail in Ref. [8].

Let us denote the cavity state after the control dis-
placement in the k" iteration of the feedback loop as
pr = Dygpr. The optimal convergence of the feedback
procedure is obtained by finding at each cycle the injec-
tion amplitude o which maximizes the fidelity F(py).
This search can be performed in a straightforward way by
numerical optimization. However, this approach is time-
consuming and could not be realistically implemented
with existing real-time data analysis systems in the few
tens of microseconds time interval between two atomic
detections. We overcome this difficulty by developing
a faster, analytical calculation of a locally optimal dis-
placement «j. Since the measurement operators, the ini-
tial density matrix and the projector on the target Fock
state are all real operators, we can reasonably choose oy
to be real. The field density matrix then remains always
real.

In the limit of small «, the Baker-Campbell-Hausdorff
formula [12] yields the following approximation for a dis-
placed state (3):

p = D(a)pD(=a) =p — alp,a’ - d]

042

+ 7[[p7 a' —al,a" —al. (10)

Using (8), we therefore get for small «y
F(pr) = F(pr) — arTr ([ox, ' —a]p..)
+ BTy ([ —al.a’~alp) . (1)
Choosing the feedback amplitude as
ap = —c1Tr ([pr, o —alpi.,) | (12)
with a gain ¢; > 0 small enough ensures that

F(pr) > F(pr) (13)

as soon as the trace in (12) is strictly positive. Fur-
thermore, since [p, My] = [prag, Me] = 0 and M] M, +
MIM,., = 1, the conditional expectation of F(ppi1)
knowing py is given by

~ ptagM ﬁkMT
E (F(prs1) | pr) = PyxTr (#)
g,k
ta Me~ MT ~
+ P Tr (%) =F(p). (14)
e,k

Therefore

E (F(prs1) | or) = E(F(pryr) | or) = F(pe) (15)

and, as a result, the expectation value of F'(py) is a non-
decreasing function of k:

1>E(F(n) 2 E(F(3) 20, (16)

We have only shown so far that F'(py) is increasing on
the average. It does not mean that, for all individual re-
alizations of the loop sequence, F'(px) converges to 1, its
maximum value reached when p is equal to p,.,. Indeed,
the feedback law (12) does not prevent the convergence
towards other Fock states, since oy = 0 whenever py is
the projector on any photon number state. A careful
analysis shows that, in each realization, F(py) converges
either to 1 or, with some small probability, to zero. To
overcome this spurious attraction towards wrong photon
number states, we propose, as in [6], to modify the feed-
back law (12) by applying a constant injection “kick” as
soon as the cavity state significantly deviates from the
target:

A Tr ([pus , a' —alpy) if Fpy) > e,
Q= (17)
2 SigN (Mo — Nk if F(p) <e.

Here, nj is the mean photon number in the current state
Pk, c2 > 0 is a constant kick amplitude. The kick condi-
tion is set by € with 1> >0. In this way, by breaking
attraction towards other Fock states, we make sure that
the cavity state converges towards the target one.

The controller gain ¢; in (17) must be tuned to maxi-
mize fidelity F(pr) at each sampling time k. Up to third-
order terms in (pr— prag), Eq. (11) yields

F(pr) = F(pr) +

2
(1 (s =aln))” (1= T s’ =aP)). (19
By maximizing this expression, we find that the gain

c1 =T ([Prag aT—a]2)71 = (4nua,+2)"1 (19)

provides the fastest convergence speed in the vicinity of
Piag- A detailed mathematical analysis and a convergence
proof of this feedback-scheme will be given in [8].

C. Simulations

To assess the performance of the proposed feedback
scheme, we have performed quantum Monte-Carlo nu-
merical simulations. Figure 2(a)-(c) presents a single
quantum closed-loop trajectory in the ideal measurement
setting, with a target Fock state |n...) = |3). The Hilbert
space is limited to n,,., = 9 photons. The atom-cavity de-
tuning is set to § /27 = 238 kHz. The mean dephasing an-
gle per photon around n,., is then about 7/7. Intuitively,
the Ramsey phase ¢r should be set at the mid-fringe
setting for n.,, photons, i.e., (¢r,0 + P(Ne))/2 = 7/4.
We have numerically observed that the convergence of
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Figure 2: A single closed-loop quantum trajectory of an ideal
measurement with |nw.g) = |3). (a) Atomic states detected
at each feedback cycle. (b) Control injections ax. (c) Evo-
lution of photon number probabilities P(n < nig), P(Ntag)
and P(n > n.,.) shown as dashed-dot blue, solid green and
dashed red curve, respectively. (d) Average over 10* closed-
loop quantum trajectories.

the process is faster when the Ramsey phase alternates
between four values in successive feedback cycles: ¢r, o,
(¢r.0 + oR), ¢r0 and (¢r,0 — or). The phase excursion
or is set at 0.69 rad. The kick amplitude cs is 0.1 with
a kick zone defined by € = 0.1. The initial cavity field
po is the coherent state with 3 photons on the average,

po =D (V3)10) (0] D (—V3).

The upper trace in Fig. 2 shows a sequence of detected
atomic state. The corresponding control inputs «ay are
plotted in the next panel. Large at the beginning, o
rapidly converges towards zero. Figure 2(c) shows the
probability for the number of photons in the cavity field
to be smaller, equal or larger than n,,, (dashed-dot blue,
solid green and dashed red curve, respectively). For this
particular quantum trajectory, we observe that p con-
verges t0 p... in less than 30 feedback cycles.

Figure 2(d) presents an ensemble average over 10* real-
izations of the same numerical feedback experiment. The
fidelity F(pr) reaches values above 0.99 after 140 cycles.
After 20 cycles only, about 80% of the trajectories have
converged to the target state, illustrating the efficiency
of the feedback method.

IV. REALISTIC EXPERIMENT

So far, we have neglected experimental imperfections.
In this Section, we take into account all known imperfec-
tions of the present experimental set-up: finite cavity life-
time, Poisson distribution of the atom number in atomic
samples, non-ideal efficiency and state-selectivity of the
detector and, finally, the finite delay between atom-cavity
interaction and atomic detection. Below, we introduce
modifications of the quantum filter (6), which make the
process efficient in spite of these imperfections.

A. Modified quantum filter

The quantum filtering process must provide us with a
density matrix describing all our knowledge of the cavity
field at a given time. We chose here this time to be right
before the injection of the actuator pulse in the k' iter-
ation of the loop, after detection of the k" atom. At this
time, our knowledge includes all atomic measurements
so far (from 1 to k), all displacements performed and
the known relaxation of the cavity field in between these
events. It must also include the influence of the d atomic
samples which have interacted with the cavity, but are
still flying towards the detector when we record atomic
sample k. All this information can, as above, be rep-
resented by super-operators acting on the field’s density
matrix.

Let us note P, the super-operator describing the de-
tection of an atomic sample. Each detection has three
possible outcomes, labelled s = e, g or u (atom detected
in e, g or no detected atom at all). The super-operator
N describes the action of one of the d atomic samples
flying from C' to D. The displacement super-operator
D is given by (3) and the field relaxation during the
time interval between atomic samples is described by T'.
The exact expressions of all these super-operators will be
given later.

Therefore, the state of the cavity field before injec-
tion is

pr = Fa 1 Fi 1 po, (20)
where
k—1
Fi,=TP, [[ D, TP, (21)
i=1

includes the information gathered by the first k£ sample
detections and

ktd—1
Fr= |[ TND,, (22)
ik

includes the influence of the d in-flight samples. Note
that due to the atomic propagation delay between C' and
D, the displacement amplitude injected in C' right after



atomic sample ¢ has interacted with it is «;_4, computed
in the (i — d)-th iteration of the loop. Hence, the first d
atomic samples cross the cavity before any displacement.
This is formally taken into account by setting D; to unity
for non-positive indices. If d = 0, i.e. for no delay in the
detection process, the empty product in (22) equals by
convention the identity operator. Consequently, in the
case of the ideal experimental parameters, the expression
(20) naturally reduces to (5).

The density operator p; is used in the feedback law
(17) to calculate the control injection ay. The product
F1, can be easily computed recursively, as in the ideal
case. However, we must recalculate F j, at each feedback
cycle.

We now give the explicit expression of all super-
operators considered so far. The measurement process
P, takes into account detector’s imperfections and non-
ideal atomic source. If the detector clicks and indicates
state |s) = |g) or |e), the new quantum state is a sta-
tistical weighted mixture of two projected states. The
strongest weight corresponds to the projection according
to the recorded outcome. With a smaller probability, the
atomic detection has been erroneous. The atom was, at
detection time, in the state |S), opposite to |s), and the
field has been projected accordingly. Thus, due to the
imperfections of state discrimination alone, we get

P(s:e/g) P = (1 - Pf)Msp + PfMgp . (23)

The weights of the two projected states are given
by the conditional probability of a wrong detection
knowing that the detector has clicked in [s): P =
nePs/ ((1 —ne) Ps + nfpg) with P, = Tr (MspMsT).

If the detector does not click (outcome s = u), either
there was no atom in the sample or an atom was present
but has not been detected. Therefore, the estimated state
is a mixture of the unperturbed cavity field and of the two
projected states corresponding to the two possible states
of the undetected atom (we assume here that these two
states are equiprobable). We thus get

P (o—uyp = (1=Pu)p+ Py (MgpM] +McpM}) . (24)

The weights in this mixture are set by the conditional
probability to have an undetected atom in a sample:
Py =1a(1=na)/(1 = nana).

The interaction with a not-yet-detected sample is de-
scribed by the super-operator N. It is given by (24) with
the conditional probability P, replaced by the atomic
sample occupation probability 7., since the measurement
has not been performed yet, resulting in

Np = (1=12)p + 0 (MgpMJ+McpM]) . (25)

The super-operator T describes the evolution due to
the cavity field relaxation during the time interval T,
between two atomic samples. Using (4) in the approxi-
mation of small time interval, T, < T¢,y, we get

Tp= (1 +T.L)p. (26)

B. Simulations

We have performed extensive simulations, similar to
those of the idealized measurement in Fig. 2, with the
feedback algorithm adapted to the realistic experimental
parameters, given in Sec. II. We use Monte-Carlo sim-
ulations to follow the state of the cavity along individ-
ual realizations of the experiment. The field relaxation
is taken into account by simulating random quantum
jumps, whose average effect is described by Eq. (26) [13].
For each atomic sample, we choose randomly the number
of atoms (0 or 1) and the real atomic state (|e) or |g))
which would be detected by the ideal detector. These re-
sults determine uniquely the subsequent field state pj*.
We then take into account the detection imperfections
to simulate the outcomes of the realistic measurement,
which are used in the feedback loop for computing pg.
Note that p™ is not accessible in the experiment. Here,
we use it to simulate the evolution of the field and, by
comparing it with the state estimated in the quantum fil-
tering process, to characterize the feedback performance.
In the ideal case, considered in Sec. III, the estimated
state pr always coincide with the real state of the field
p;gcal'

Figure 3(a)-(d) shows a typical quantum trajectory, il-
lustrating the robustness of our feedback scheme at the
present level of imperfections. The first difference with
the ideal case is the presence of many feedback cycles
with no detected atoms. Nevertheless, after about k =
100 feedback cycles (each of 85 us duration), correspond-
ing to approximatively kn, ~ 30 atoms and kn,nq ~ 24
detector clicks, the cavity state successfully converges to
the target Fock state |n...) =3).

The other striking feature is the presence of sudden
photon jumps due to the limited cavity lifetime. In this
particular trajectory, a photon loss occurred at feedback
cycle number k=430 (at about 37 ms). One sees that
about 60 cycles (about 5 ms) are required to detect the
jump before applying a large control displacement and
about 60 more cycles to restore the target photon number
in the cavity field.

Figure 3(e) shows the same type of ensemble average as
presented in Fig. 2(d). We observe a convergence towards
a fidelity of 0.63 after several hundred cycles resulting in
about 100 detector clicks. This convergence, given as
the number of actually detected atoms, is similar to that
observed in the ideal case. The main difference between
the two traces is the reduced asymptotic value of the
fidelity of the prepared state: F' = 0.63 instead of F' =1
in the ideal case. This reduction is mainly due to the
cavity decay, which results in uncontrolled jumps of the
photon number. The observed fidelity indicates that for a
typical closed-loop trajectory the field stays in the state
[3) about 63% of time. Since the lifetime of |n,,.) is
given by Teay/((1 4+ ngn)na, + men(n + 1)) = 45 ms [10],
we estimate that it takes on the average 26 ms to restore
the initial Fock state after a sudden jump.

In order to observe in more detail the recovery of the
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Figure 3: A single closed-loop quantum trajectory for realistic
experimental parameters with |n.e) = [3). (a) Sequence of
detected atomic states. (b) Control injections ay. (¢) Evolu-
tion of the photon number probabilities P(n < ni.g), P(nag)
and P(n>n..e) (dashed-dot blue, solid green and dashed red
curve, respectively) of the field state p***' deduced from the
Monte-Carlo simulation. The thin black line gives the esti-
mated state fidelity F(px). (d) Photon number probabilities
for n = 0 to 9 in p™*. For better clarity, results of only one
out of each 10 feedback cycles are shown. (e) Average over
10* closed-loop quantum trajectories. If the number of quan-
tum trajectories is large enough (as is the case here), the av-
eraged photon number probabilities calculated from the real
field states p™*' coincide with those averaged over the esti-
mated states.
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Figure 4: Feedback performance in the presence of a sud-
den photon number loss. The fidelity of the actual cavity
state pir® (blue solid curve) and of the state estimated by the
quantum filtering process pr (red dashed curve) are defined
with respect to the target Fock state and are obtained by av-
eraging over 10 quantum trajectories. In each trajectory, the

time origin is shifted to the time of a quantum jump.

system after a sudden photon jump, we recorded 10%
quantum trajectories showing sudden photon losses at
different times. Before averaging the trajectories, we shift
their individual time origins to the time of a jump. Fig-
ure 4 shows the evolution of the fidelity of the actual
(solid curve) and estimated (dashed curve) cavity states
with respect to p.... As calculated before, it takes about
20 — 30 ms to restore the initial photon number state
after a sudden photon loss.

The maximum fidelity of the quantum feedback, seen
in Figs. 3-4 and corresponding to the ensemble of many
realizations, shows how well a chosen photon number
state can be preserved on average from its unavoidable
decay. However, since in each feedback cycle we acquire
actual information on the field, the fidelity of the deter-
ministic generation of Fock states in a single realization
can be much higher. To reliably produce the target state
Peae We keep the feedback process running until we de-
tect its successful convergence to p... with an estimated
fidelity better than Fiopny. Figure 5(a) shows a histogram
of convergence times for Feony = 95 % obtained from 10%
quantum trajectories. The cumulative distribution, pre-
sented by a solid line, shows that after 20 ms the proba-
bility of a successful feedback outcome reaches 50 % and
that it exceeds 90 % after 85 ms of the feedback opera-
tion. The inset in Fig. 5(a) shows the average density
matrix of converged states with the population in |n,,,)
of about 95 %.

Our feedback scheme can be tuned to generate any
small photon number states. Figure 5(b) illustrates the
convergence for several Fock states from |n...) = |1) to
|5). By increasing n..,, the initial photon number distri-
bution gets broader as the photon number lifetime gets
shorter. Therefore, the feedback performance slowly de-
grades, resulting in the increased convergence time for
the same required fidelity Feony-
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Figure 5: Feedback convergence. (a) Histogram of conver-
gence times with Feony = 0.95. The solid line gives the
probability of the feedback convergence after a given time.
The inset shows the average density matrix of the converged
states. (b) Convergence for several different Fock states.
These curves result from an average over 10* quantum trajec-
tories.

C. Real-time computation

Implementation of this quantum feedback scheme into
a real experiment requires fast real-time analysis of the
measured data, faster than duration T, of one feedback
cycle. We have tested a real-time processing system
ADwin (Jager Messtechnik) allowing for fast data ac-
quisition and analysis in combination with complex ex-
periment control. After careful optimization of all feed-
back computations, the execution of one typical feed-
back cycle of the proposed scheme requires about 4000
floating-point operations. Our preliminary tests have re-
vealed that the ADwin system needs for this task about

30 us < T, = 85 us. We are now working on the integra-
tion of this control system into our cavity QED set-up.

V. CONCLUSION

We have presented a quantum feedback protocol de-
signed to deterministically generate small photon number
states of a trapped microwave field. The reliable estima-
tion of the cavity state at each feedback cycle allows us
to follow in real time the quantum jumps of the photon
number and then to efficiently compensate them, thus
protecting Fock states against decoherence.

The two main components of the feedback algorithm
are the quantum filter, which estimates the actual state
of the field based on the outcomes of QND measurements,
and the feedback law computing the amplitude of a cor-
rection microwave pulse whose injection into the cavity
mode maximizes the field fidelity with respect to a de-
sired Fock state. Quantum Monte-Carlo simulations of
the QND measurements and the quantum feedback re-
sponse demonstrate the high reliability of our closed-loop
scheme even in the presence of realistic experimental im-
perfections. This scheme is also robust with respect to
an imprecise knowledge of the initial state, since the re-
peated measurements of the state corrects initial wrong
or incomplete information. Convergence and stability
proofs of these feedback schemes will be given elsewhere.
For a first set of mathematical results, see Ref. [8].

The presented scheme can be extended to include
the Ramsey phase ¢r and the spin dephasing ®(N)
as additional control parameters of the feedback loop.
This should help to optimize the QND measurement
according to our estimate of the actual field state and
thus to acquire more information on its dynamics. These
studies are under the way.

Acknowledgements Work supported partially by
Agence Nationale de la Recherche (projet ANR-05-
BLAN-0200-01 and projet Blanc CQUID 06-3-13957),
Japan Science and Technology Agency (JST) and EU
(IP project SCALA).

[1] C. Guerlin et al., Nature 448, 889 (2007)

[2] H. M. Wiseman and G. J. Milburn, Phys. Rev. A 49,
4110 (1994)

[3] S. Deléglise et al., Nature 455, 510 (2008)

[4] V. P. Belavkin, J. Multivariate Anal. 42, 171 (1992)

[5] L. Bouten, R. Van Handel and M. James, SIAM
J. Contr. Optim. 46, 2199 (2007)

[6] M. Mirrahimi, R. Van Handel, SIAM J. Contr. Op-
tim. 46, 445 (2007)

[7] J. M. Geremia, Phys. Rev. Lett. 97, 073601 (2006)

[8] M. Mirrahimi, I. Dotsenko and P. Rouchon, in prepara-

tion (quant-ph/0903.0996)
[9] J-M. Raimond, M. Brune,
Rev. Mod. Phys. 73, 565 (2001)
[10] M. Brune et al., Phys. Rev. Lett. 101, 240402 (2008)
[11] D. F. Walls and G. J. Milburn, Quantum Optics,
(Springer, Berlin, 1994).
[12] S. M. Barnett and P. M. Radmore, Methods in Theoret-
ical Quantum Optics, (Oxford University Press, 2003).
[13] S. Haroche and J.-M. Raimond, Ezploring the Quantum,
(Oxford University Press, 2006).

and S. Haroche,



