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Abstract
In applications it is useful to compute the local average of a func-

tion f(u) of an input u from empirical statistics on u. A very simple

relation exists when the local averages are given by a Haar approxima-

tion. The question is to know if it holds for higher order approximation

methods. To do so, it is necessary to use approximate product op-

erators defined over linear approximation spaces. These products are

characterized by a Strang and Fix like condition. An explicit construc-

tion of these product operators is exhibited for piecewise polynomial

functions, using Hermite interpolation. The averaging relation which

holds for the Haar approximation is then recovered when the product

is defined by a two point Hermite interpolation.

Keywords Strang and Fix conditions Product Approximation Hermite
Interpolation Wavelets

1 Introduction

The theory of averaging [1] approximates the solutions of a differential sys-
tems dx/dt = f(x, t, t/�), where � is a small parameter, by the solution of an
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“averaged” system dx/dt = f̄(x, t). In practice, f is not given as a function
of two time scales t and t/�, but rather as a function f(x, u) where u is an
input which is a function of time. The question is to give a practical sense
to the “average” of f(x, u) as a function of the input u.

The answer is relatively simple when the averaging of f (and u) is ob-
tained by computing its averages on a sequence of intervals [kδ, (k + 1)δ).
In this paper, we assume that f is a polynomial function. If E denotes the
averaging operator, it can be easily shown that the following identity holds:

E(f(u)) =
k=∞�

k=0

f (k)(e)

k!
E(wk) (1)

where e = E(u) and w = u − e. We can see that f is expanded around
the average of u, and the powers of w are replaced in the expansion by
their averages. If one interprets the averaging operator E as an empirical
expectation, then (1) shows that the expectation of f(u) is computed by
using the derivatives of f at the expectation e of u and the moments of the
“noise” w. While it is easy to derive, equation (1) appears to be new or at
least not a classic.

This previous method of averaging is also an approximation procedure
which is related to the Haar multiresolution analysis. There are other meth-
ods of approximation which are more efficient and yet give a sense of local
average. Wavelets [2, 3, 4] provide such methods. The order of approxima-
tion are then given by the classic Strang and Fix conditions [5] which states
that the order of approximation of smooth functions is characterized by the
ability of the approximation method to reproduce polynomials up to a cer-
tain order. This condition is related to the number of vanishing moments of
the wavelet. The approximation of a function is obtained by projection on
a resolution space, which is itself generated by the translates of a so called
scaling function. The previous averaging is a particular case of approxima-
tion on a resolution space where the scaling function is the characteristic
function of an interval. The corresponding multiresolution analysis is called
the Haar system. Among all wavelet methods, it yields the lowest order
of approximation, since its scaling function reproduces only polynomials of
degree zero.

The following question then arises: is it possible to have the relation (1)
for higher order approximation methods (wavelets or not)? This will be the
main subject of this article.
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It turns out that projectors which satisfy equation (1) can be simply
characterized by two conditions on their image space and their kernel:

Proposition 1 Let V the image space of the projector E and W the image

of Id− E. Equation (1) is verified if and only if

(P1) the product of two elements of V belongs to V

(P2) the product of a element of V with a element of W is a element of W

The sufficient part is proved by expanding f around e and applying E. The
necessary condition is derived from (1) using f(x) = x2 with x = e + b and
x = e− b, e ∈ V and successively b ∈ V and b ∈ W.

Finding approximation projectors which satisfy equation (1) if thus equiv-
alent to satisfying properties (P1) and (P2). As we shall see in the next sec-
tion, property (P1) implies that the function whose translates generates V

is the characteristic function of an interval. It appears then that high order
approximation methods cannot satisfy property (P1).

This last limitation is due to the use of the classical product on functions.
Since we are dealing with approximations of functions, we can replace the
classical product by an approximate product without degrading the order of
approximation of the result. A general characterization of such approximate
products is given in section 2.2.2. Like the Strang and Fix conditions, it is
based on the reproduction of polynomials.

There remains to construct such approximate products. The difficulty
is to verify the associativity of the product operator. In the case where
the functions are piecewise polynomial, we give in section 3.2 a constructive
characterization of approximate products in this functional space. These
products are defined by a Hermite interpolation. In the simple case of a
two point interpolation, we exhibit in section 3.4 an approximation projector
which satisfies properties (P1) and (P2), and thus equation (1).

2 Product invariance and approximation

2.1 Two results on product invariance

The property (P1) states that the space V should be product invariant. We
consider here the case where V = Vδ ⊂ L

2(R) has a Riesz basis (φk)k∈Z
with φk(t) = φ(t/δ−k)/

�
(δ), and φ is compactly supported. In the wavelet
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context, Vδ is a resolution space and φ is a scaling function. Given a function
e ∈ Vδ, Ck(e) will denote its coordinate on the vector φk. The following
general lemma characterizes the product operators for which (P1) holds:

Lemma 1 Let ∗ a (nonzero) product operator such that (Vδ, +, ∗) be a com-

mutative ring. It is assumed that that ∗ commutes with the shift of length

δ, and that the product of two compactly supported functions is zero beyond

some fixed distance. Then there exist a constant A �= 0 such that, for any x
and y in Vδ, and any n ∈ N,

Cn(x ∗ y) = ACn(x)Cn(y). (2)

If ∗ is the usual product on functions, then the intersection of the supports

of φi and φj is of measure zero if i �= j.

This lemma is proved in appendix A. Let us apply it to the case where an
approximation operator is associated to the space Vδ:

Theorem 1 Let Eδ a projector on Vδ defined by a rescaled kernel: Eδx(t) =
1/δ

�
K(t/δ, s/δ)x(s)ds. We assume that Eδ is an approximation operator,

e.g.,for any f ∈ L
2(R),

�Eδf − f�L2(R) → 0 when δ → 0. (3)

If V1 is product invariant for the usual product, then φ is proportional to the

characteristic function of an interval of length 1.

Proof. Thanks to the projector Eδ, the linear form Ck is extended to L
2(R).

Under mild assumptions, it can be represented by an L
2(R) function φ∗k; one

can easily see that φ∗(t) = φ∗(t/δ − k)/
�

(δ) with φ∗ compactly supported
and that K(t, s) = φ(t)φ∗(s). The Strang and Fix conditions [5] imply that
E(1) is defined and is equal to 1. Since the φk’s have disjoint support and
have the same shape, they must be proportional to the characteristic function
of an interval of length 1. �
Theorem 1 implies that, if Eδ yields an order of approximation strictly greater
than the minimum provided by the Haar basis, then Vδ cannot satisfy (P1).
Indeed, φ cannot be a piecewise constant function anymore, and the only
assumption that may be invalid in lemma 1 with the usual product is the
product invariance of Vδ.
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2.2 Characterization of approximate products (a gen-

eralization of the Strang and Fix conditions)

2.2.1 Introduction

While (2) does not hold for higher order approximations, it is not far from
being verified; if δ is small, 1/δφ(t/δ) is close to a Dirac, and the sample of
a product is the product of the samples. In general, this product only yields
a first order approximation. Coiflets [2, 6] provide scaling functions with a
high order approximation which are good approximations of Diracs. This
suggests that using approximate product operators may recover the product
invariance of V. Such approximate product operators are characterized in
the next section.

2.2.2 The polynomial condition for product approximation

Assumptions: let ∗ a product operator on V1 such that (V1, +, ∗) be a
commutative ring. It is assumed that that ∗ commutes with the shift of
length L, L ∈ R and that is continuous and localized as follows: there exists
(K, µ) such that

|f ∗ g|(t) ≤ K sup
|s−t|≤µ

|f(s)| sup
|s−t|≤µ

|g(s)|.

The product operator ∗δ is defined on Vδ by rescaling: f(t/δ) ∗δ g(t/δ) =
(f ∗ g)(t/δ). It is assumed that Eδ satisfies the Strang and Fix conditions [5]
at order N , e.g. Eδ(ti) = ti if i ≤ N . Then

Theorem 2 The following two conditions are equivalent

• There exists K such that, for any f and g of class CN+1
and any δ ≤ 1,

|fg(t)− [(Eδf) ∗δ (Eδg)] (t)| ≤ KδN+1 sup
(k,l)∈IN ,|s−t|≤(µ+M)δ

��f (k)(s)
�� ��g(l)(s)

��

(4)
where IN denotes the set of integers (k, l) ∈ N × N such that 0 ≤ k ≤
N + 1, 0 ≤ l ≤ N + 1 and k + l ≥ N + 1.

• ti ∗ tj = ti+j
if i + j ≤ N (5)

5



The proof of this theorem is in appendix B. Observe its similarity with the
classical Strang and Fix conditions for linear operators [5].

Note that Beylkin [7] has designed a recursive algorithm to compute the
wavelet coefficients on the product of two functions. It converges fast if the
functions are regular. The computation of the exact product involves an
infinite number of computations; an approximation is computed by stop-
ping the recursion before the infinity. The result presented here is different
in the sense that it characterizes approximate product operators which are
compatible with the scaling operation. In section 3 we effectively build such
operators for piecewise polynomial functions.

3 Working with piecewise polynomial func-

tions

3.1 Introduction

Since the mapping x → a× x is linear, building a product operator appears
at a first glance as the construction of a collection of linear operators. The
extra requirement that the operator be associative shows that things are
more complicate; indeed, checking the associativity is a nonlinear problem.
This eliminates Fourier methods for finding approximate products.

A case where approximate products are easy to find is when the coordinate
of the approximation of a function is a sample (interpolating scaling functions
[8, 9]) or an approximation of a sample (Coiflets). The approximate product
is defined by having the coordinate of the product to be the product of
the coordinates, as in lemma 1. The functional space on which the general
product is defined is a resolution space at a fine scale. There remains to
define an approximation subspace which is product invariant. Since we are
dealing with multiresolution analysis, the natural idea is to consider a coarser
resolution space. In general, it is not product invariant under the action of
the product which is defined on the fine scale. Take for instance the Schauder
basis, where approximations are defined by linear approximations between
samples. The scaling function is the hat function, which is the autocorrelation
of the Haar function 1[0,1). Then the coarser resolution spaces are not product
invariant. Indeed, let us consider a coarse scaling function, e.g. a scaled hat
function; if the resolution space was product invariant, the square of the
scaling function would be a linear interpolation over the coarse grid. This
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is not the case, because the approximate square is computed by performing
an interpolation of the square over the fine grid, and the result is a linear
interpolation over samples of a parabola. It is not a linear interpolation over
points of the coarse grid. So, even in this simple case, the matter of finding
product invariant approximation subspaces is not obvious.

The nature of approximating product invariant subspaces is linked to the
choice of the approximate product operator. To better understand the nature
of this link, we have chosen to restrict our attention to the special case where
functions are piecewise polynomial ones. This will allow us to characterize
the relationship between the choice of the operator and the approximation
subalgebras.

Observe that wavelets can detect singularities in piecewise regular func-
tions (provided the singularities are not too close) and analyze them ([10, 2]).
Then these function pieces can be approximated by piecewise polynomial
functions. We can therefore assume to have an approximation of piecewise
regular functions as piecewise polynomials.

We now assume assume that the function has been preprocessed to be
represented as an equally spaced piecewise polynomial function of degree
smaller than some N ∈ N. The study of conditions (P1) and (P2) will not
bear on general functions but on piecewise polynomial ones.

This section is organized as follows. Section 3.2 characterizes the approx-
imate product on piecewise polynomial functions by showing that they must
be defined by a Hermite interpolation. To recover property (P1), section
3.3 studies the approximation subspaces of piecewise polynomial functions
which are product invariant. In particular, all of these subspaces include a
minimal one which consists in so called regular functions. Finally, section
3.4 studies the case where the approximate product is defined by a Hermite
interpolation between two points and exhibits an approximation projector
which satisfies properties (P1) and (P2), and hence equation (1).

3.2 Characterization of approximate products for piece-

wise polynomial approximations

3.2.1 The algebraic Strang and Fix conditions for piecewise poly-

nomial approximations

Denote by SN,δ(t) the space of piecewise polynomial functions over successive
intervals of length δ and with a degree smaller or equal to N . To maintain
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consistency with the linear and nonlinear approximation conditions previ-
ously mentioned, we assume there exists a linear approximation operator Pδ

which transforms functions into elements of SN,δ(t). Pδ is defined by scaling
a kernel K which is assumed to have the structure

K(t, s) =
�

k∈Z

l=N�

l=0

(t− k)l1[k,k+1)(t)ϕl(s− k) (6)

and to satisfy the assumptions1 of the result of Strang and Fix with the order
N (two such operators are presented in [11]). Theorem 2 is transposed to
SN,δ(t) and relates it to an algebraic condition:

Proposition 2 Denote by RN [t] the space of real valued polynomials with de-

gree smaller or equal to N , and by Fδ the operator [Fδp] (t) =
�

k∈Z pk (t/δ − k) 1[k,k+1)(t/δ)
which identifies polynomial sequences in RN [t] to functions in SN,δ(t). If × is

a product operator over RN [t], it is transposed to an operator ∗δ on functions

in SN,δ(t) as follows:

(f ∗δ g)(t) = Fδ

�
(F−1

δ f)k × (F−1
δ g)k

�
k∈Z (7)

Then ∗δ approximates the product on the image of Pδ like in condition (4) of

theorem 2 if and only if × satisfies:

ti × tj = ti+j ∈ RN [t] if i + j ≤ N (8)

This result is proved in [11].
Comment: the degree of the product is restricted to be smaller or equal

to N in order to have SN,δ(t) product invariant. This, in turns, makes sure
that the complexity of the function representation does not increase with
every product operation. It also makes sense numerically: since the elements
of SN,δ(t) are at best approximations of regular functions at the order N ,
there is no need for a greater precision on the computation of the product.

3.2.2 Description of all approximate products

Proposition 2 reduces the search for approximate products over SN,δ(t) to
algebraic products on RN [t] which satisfy (8). These are characterized in the
following lemma:

1
In particular, it is defined by a shift invariant scaled kernel.
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Lemma 2 (Hermite interpolation product) Let × an associative, com-

mutative product over RN [t] which satisfies (8), and define TN+1 ∈ RN [t] by

TN+1 = tN×t. Then, for any p and q in RN [t], p×q is the Hermite interpola-

tion of pq at the (possibly multiple) zeros of tN+1−TN+1(t) in C. Conversely,

any such product is associative, commutative, and satisfies (8) in RN [t].

This lemma is proved in appendix C.
Interpretation: it is convenient to understand the product operators × of

lemma 2 as follows:

• at every interpolation point z of order o, a Taylor expansion at order o
of the polynomials x and y is computed;

• at every interpolation point z of order o, the product of the expansions
is computed and the coefficients of degree greater than o are set to zero;
denote by pz the result;

• the product x× y is then the Hermite interpolation of the various pz.

This leads to the following constructive characterization of approximate prod-
uct operators on SN,δ(t)

Theorem 3 Let ∗δ a product operator on SN,δ(t) related to an algebraic prod-

uct operator × by (7). Then ∗δ approximates the product on the image of Pδ

like in condition (4) of theorem 2 if and only p× q is defined by the Hermite

interpolation of pq in RN [t] on a set of interpolation points.

Examples Assume that N is odd, N = 2p + 1. Then the product can be
defined as the Hermite interpolation of the product at the points 0 and 1 and
orders p. For p = 0, the product is the linear interpolation of product of the
samples. For continuous functions, the resulting product is the same as the
product previously exhibited on the Schauder basis.

3.3 Product invariant approximation subspaces

Our working space is now SN,δ(t). If we remember the decomposition x =
e + w, e should belong to an approximation space which satisfies condition
(P1), e.g. it is product invariant. This section shows that all such ap-
proximation spaces include a minimal algebra which is defined by “regular”
functions. In particular, the number of parameters required per time step to
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describe a regular function has a non zero lower bound. This is a contrast
to the situation of multiresolution approximations where a nested structure
of approximation spaces exist such that the number of parameters per time
unit required to describe functions in a resolution space tends to zero as the
scale tends to the infinity.

3.3.1 A variation on the Strang and Fix condition

All of the previous results require the existence of an approximation operator
for regular functions. Consistently, we characterize the linear operators Qδ

on SN,δ(t) which approximate regular functions at the order N . Consistently
again, we assume that Qδ = FδQ F

−1
δ , where Q applies a unique operator

Q on blocks of q successive polynomials. In other words, Qδ is defined by
q-shifting and scaling an operator Q on (RN [t])q.

Proposition 3 Let Pδ the scaled operator which codes functions into piece-

wise polynomials. Then QδPδ approximates functions of class CN+1
with an

error of order δN+1
if and only if

Q
�
((t + k)p)k∈Z

�
= ((t + k)p)k∈Z for 0 ≤ p ≤ N (9)

The proof essentially consists in showing that Qδ Pδ has the structure re-
quired by the result of Strang and Fix with a shift length qδ. Details of the
proof are in [11]. The choice of q > 1 is to allow more general operations on
piecewise polynomials like combined interpolation and subsampling.

In looking for subspaces of SN,δ(t), we will require that they be defined as
the image of an approximation operator Qδ. An important consequence of
the previous proposition is that these subspaces must contain the functions
ti, i ≤ N ; if they are product invariant, they must contain all the monomials
defined by the approximate product operator.

3.3.2 Product invariant subspaces and Hermite interpolation points

We have characterized approximate product operators over SN,δ(t). To define
an approximation on this space which satisfies property (P1), we must study
the subspaces of SN,δ(t) which are product invariant and include polynomials
of degree smaller or equal to N , a condition which is necessary for them to
qualify as an approximation spaces. It turns out that all of these various
spaces include a minimal one, which is the space of so-called regular functions
of SN .
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Notations Let × an associative, commutative product over RN [t] which is
defined by a Hermite interpolation as in theorem 2.

• Z is the set of interpolation points which defines the product×, without
counting the order of multiplicity.

• if z ∈ Z, o(z) denotes the order of interpolation used by the product
at the point z.

• I denotes an arbitrary finite subset of I and SN,I [t] is the space of
sequences with elements in RN [t] and indices in I.

Regular functions

Definition 1 (Regular functions) The subspace S̃N,I [t] of “regular func-

tions” in SN,I [t] is the set of sequences p ∈ SN,I [t] such that p(j)
k (z) = p(j)

k̃
(z̃)

if z + k = z̃ + k̃ and j < min(o(z), o(z̃)).

Interpretation: sampling points z and z̃ such that z + k = z̃ + k̃ with
k, k̃ ∈ Z are called overlapping sampling points. The redundancy introduced
by the regularity can be removed by identifying any regular function to a
unique polynomial, while preserving the product. At every sampling point,
for all indices, the maximum order of interpolation is computed for all sam-
pling points which may overlap here. The global polynomial is defined by
Hermite interpolation at these maximum orders. The polynomial product is
defined by the same interpolation. This establishes an algebraic isomorphism
between regular functions and a single polynomial algebra. The dimension of
the latter is Ω(I), which is the sum of all the orders of interpolation increased
by one2. An important property of Ω(I) is that it is greater or equal to N
plus the number of elements of I, if I is finite. Indeed, Ω(I) is an increas-
ing function of this number of elements, since each shift of the interpolation
points adds at least one node which does not overlap the previous ones. If I
has one element, then Ω(I) = N + 1.

Minimum approximation subalgebras Regular functions are the min-
imum approximation product invariant subspace of piecewise polynomials:

2
At an interpolation point, the number of parameters describing the function is equal

to the order plus 1
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Theorem 4 (Minimum subalgebra) • S̃N,I [t] is a product invariant

subspace of SN,I [t] which includes the sequences ((t + k)p)k∈I for 0 ≤
p ≤ N .

• If I is finite and if ΣI is a subalgebra of SN,I [t] which includes the

sequences ((t + k)p)k∈I for p = 0 and p = 1, then S̃N,I [t] ⊂ ΣI .

Proof. Let us prove the first statement. From the definition of S̃N,I [t]
and the definition of the product, it is easy to verify that S̃N,I [t] is product
invariant. If z and z̃ are two interpolation points, and k and k̃ two integers

such that z +k = z̃ + k̃, then ((t + k)p)(j) (z) =
�
(t + k̃)p

�(j)
(z̃). This proves

that the sequences F
−1
1 (tp) = ((t + k)p)k∈Z belong to S̃N,I [t].

Let us prove now the inclusion property. Denote by Tl the sequence
((t+k)l)k∈I , l = 0, 1. By assumption, T0 ∈ ΣI ∩ S̃N,I [t] and T1 ∈ ΣI ∩ S̃N,I [t];

hence the powers Tn
def
= Tn−1 ∗ T1 belong to ΣI ∩ S̃N,I [t]. One can prove that

any element p of S̃N,I [t] can be uniquely represented by a polynomial H−1p of
RΩI [t], where ΩI is an integer determined by the overlapping sampling points,
and that H commutes with the product. Hence, if n < ΩI , Tn has the unique
representation H−1Tn = tn in RΩI [t]. As a consequence, (T0, T1, . . . , TΩI−1)
is a basis of S̃N,I [t] because it is the image of the basis (1, t, . . . , tΩI−1) of
RΩI [t]. Since (T0, T1, . . . , TΩI−1) is also in ΣI , necessarily ΣI includes the
algebra generated by this family, e.g. S̃N,I [t]. �
Theorem 4 indicates that the only degrees of freedom which are left in the
definition of an algebra ΣI lie in the singularities at the overlapping sampling
points.

3.4 Recovering properties (P1) and (P2) in the case

of a two point interpolation product

There are as many spaces of regular functions as there are interpolation
points. To simplify, we consider here the case where the product is defined
by a Hermite interpolation between two points of equal order. We shall
assume, without loss of generality, that these two points are 0 and 1. This
implies that the piecewise polynomials are defined by an even number of
parameters, e.g., their degree N is odd, e.g. say, N = 2n + 1.
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3.4.1 Hermite function representation and interpolation

After a suitable piecewise polynomial approximation of degree 2n + 1, func-
tions are represented as sequences of pairs (lk, rk)k∈Z of polynomials of degree
n. The corresponding piecewise polynomial function can be written

�

k∈Z

i=n�

i=0

�
l(i)k (0)Hi

�
t

δ
− k

�
+ r(i)

k (0)(−1)iHi

�
1− t

δ
− k

��
1[k,k+1)

�
t

δ

�

where Hi(t) is the unique polynomial of degree 2n + 1 which satisfies

H(j)
i (0) = δi,j and H(j)

i (1) = 0 for 0 ≤ j ≤ n

A method for constructing Hi, 0 ≤ i ≤ n can be found in [12]. Repeated
applications of Rolle’s theorem prove that Hi(t) > 0 if 0 < t < 1.

0 0.1 0 .2 0 .3 0 .4 0 .50

0.005

0.01

0.015

0.02

p1(t)=t3

L1(t)=0 R2(t)=0

R1(t)=
δ3+3δ2t

L2(t)=
δ3-3δ2t

p2(t)=(δ-t)3

δ

Figure 1: A sequence (p1(t) = t3, p2(t) = (δ − t)3) of two cubic polynomials
can be viewed as a sequence ((L1(t) = 0, R1(t) = δ3 + 3δ2t) , (L2(t) =
δ3 − 3δ2t, R2(t) = (δ − t)3))) of couples of polynomials with degree 1. Li

polynomials are Taylor expansions at the left point; Ri are expansions at the
right point. “Regular functions” are defined by R1 = L2.

3.4.2 Product definition

The product (lk, rk)××(λk, ρk) of two sequences (lk, rk) and (λk, ρk) is defined
by

(lk, rk)××(λk, ρk) = (lk × λk, rk × ρk)

with
(p× q)(t) =

�

i+j≤n

piqjt
i+j ∈ Rn[t]
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3.4.3 Recovering properties (P1) and (P2)

The results of section 3.3 are used to build product invariant subspaces using
a regularization operator which removes singularities; (P1) is thus recov-
ered. The symmetric structure of this operator makes it possible to recover
property (P2).

Regularization operator Subalgebras are defined by removing singular-
ities. Define the regularization operator Rk by

Rk(l, r)k =

�
lk,

rk + lk+1

2

�

Rk(l, r)k+1 =

�
rk + lk+1

2
, rk+1

�

Rk(l, r)j = (lj, rj) otherwise

All of the Rk’s commute, and, given an index set I, the operator RI is
defined as the composition of the Rk’s for k ∈ I. If S is a subalgebra of
SN [t], then RIS is also a subalgebra of SN [t]. Moreover, if S includes regular
functions, then RIS also includes regular functions. Finally, RI reproduces
polynomials like in the Strang and Fix conditions (9) because polynomials
sequences are regular functions which are unchanged by RI . It is thus a high
order approximation projector when the interval between the polynomial
samples tends to 0.

Singularity operator The singularity operator Sk is defined by Sk =
Id−Rk, e.g.

Sk(l, r)k =

�
0,

rk − lk+1

2

�

Sk(l, r)k+1 =

�
lk − rk+1

2
, 0

�

Sk(l, r)j = (0, 0) otherwise

If I ⊂ Z, SI is defined as SI = Id−RI .

Recovering properties (P1) and (P2) These two operators are sym-
metry based, like the decomposition in the Haar basis. For this reason,
properties (P1) and (P2) are recovered:
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Theorem 5 (Product and decomposition) Let I ⊂ Z, VI the image of

RI , WI the image of SI . Then SN [t] = VI ⊕WI , and

(P1) the product of two elements of VI is an element of VI

(P2) the product of an element of VI with an element of WI is an element

of WI

(P3) moreover, the product of two elements of WI is an element of VI

Proof. The decomposition of x between RIx and SIx is the decomposition
of a pair of vectors into the symmetric and their antisymmetric parts. �
Theorem 5 yields a polynomial formula which is similar to (1):

0 0.5
0

0.01

0.02

Smooth part 0 0 .5
-0.01

-0.005

0

Singular part

L1(t)=0 L1(t)=0

R1(t) = δ3= L2(t)

R2(t)=0 R2(t)=0

R1(t) = 3δ2t = -L2(t)

Figure 2: The piecewise polynomial sequence of figure 1 is decomposed by
symmetry into its regular part and its singular part.

Corollary 1 If x ∈ SN [t] and P ∈ R[t], then

RI(P (x)) =
k=∞�

k=0

P (2k)(e)

2k!
w2k (10)

with e = RIx and w = SIx, and P (x) is defined with the product operator
3

∗.
3
Actually, R is identified to the constants of SN [t], e.g., the coefficients of the polynomial

P are constant functions.
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3.4.4 Application

We give a very simple application. We wish to estimate the commuta-
tion defect between the polynomial and the regularization (approximation)
operator. To do so, we estimate RI(P (x)) − P (RIx). This calls for a
norm on the elements of SN,δ(t) which is compatible with the product, e.g.
�x ∗ y� ≤ �x��y�. Let us represent the elements σ of SN,δ(t) as sequences
(lk, rk) of polynomial pairs of degree less or equal to n and renumber it
as a sequence of polynomials pk. A ∗ product compatible norm �σ�∗ of
σ is supk �pk�n, where �p�n is the product compatible polynomial norm
�

�i=n
i=0 piti�n =

�i=n
i=0 |pi|δi. Assuming that the norms of the derivatives

P (2k)(e) are uniformly bounded by K, we get the estimate from equation
(10):

�RI(P (x))− P (RIx)�∗ ≤ K(cosh �SIx�∗ − 1)

This estimate can be used to select on which index set I the regularization
operator RI must bear in order to have a commutation defect which is smaller
than a given threshold �.

4 Conclusion

From a simple averaging scheme we have drawn equation (1) which relates
the average of f(u) to the average E(u) of u and the averages of the powers
of the remainder u−E(u). A projector satisfies (1) if and only if it satisfies
properties (P1) and (P2). This implies that the product of two “averaged”
functions be itself an “averaged” function. This property is very strong; in
fact, we show that, when the space of “averaged” functions is generated by
the shifts of a single waveform, this property implies that the waveform is
the characteristic function of an interval. In terms of approximation theory,
this means that the order of approximation provided by the projection on
the space of “averaged” functions is the lowest possible.

To work around this limitation, we observe that the space of “averaged”
functions is an approximation space and that an approximate product may be
substituted to the actual one without degrading the order of approximation.
We have exhibited in section 2.2.2 a new result on the characterization of such
approximate product operators by means of a Strang and Fix like condition.

However, it seems difficult to construct such approximate products in a
general framework. This is why we have restricted ourselves to piecewise
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polynomial functions. For this space of functions we have exhibited a com-
plete parameterization of approximate product operators which is based on
Hermite interpolation.

Using such an approximate product implies the existence of a minimal
product invariance subspace; it excludes the construction of embedded ap-
proximation spaces obtained by rescaling, in the manner of multiresolution
approximations. By characterizing the minimum approximation subalgebra,
we can observe that the “smooth” part of the function should be obtained
by removing the singularities at the overlapping interpolation points.

In the case of a two point interpolation scheme, this idea is explicited
in section 3.4.3 and a suitable decomposition of the function into a regular
and a singular part is exhibited which satisfies conditions (P1) and (P2).
The regularization operator is an approximation projector which satisfies a
simplified version of equation (1), which was the goal of the article. This
operator is based on the averaging of the left and right derivatives of the
function at the interpolation points. As such, it gives sense to the “average”
of a nonlinear function f(u) as a function of the input u.

This simple decomposition works because it is based on the symmetry
properties of its arguments, a structure which is sufficiently strong to be
preserved through nonlinearities.

Overall, it is possible to retrieve properties (P1) and (P2) by using
approximate product operators on piecewise polynomial approximations of
functions. Equation (10) is very simple and can be used, for instance, to
detect which singularities are negligible in the commutation between the
regularization and the polynomial operator.

A Proof of lemma 1

Proof. Let r the maximum integer n for which φ0 ∗ φn �= 0; because the
product is commutative, r ≥ 0. Let Mr = max {k ∈ Z s.t. Ck(ϕ0 ∗ ϕr) �= 0}.
Consider now (φ0 ∗ φr) ∗ φMr+r; there exist a non zero constant a such that
it is equal to aφMr ∗ φMr+r, which is itself non zero. On the other hand, it is
also equal to (φ0 ∗ φMr+r) ∗ φr, which is zero if Mr > 0; hence, Mr ≤ O. By
a symmetric argument, one verifies that mr = min {k ∈ Z/Ck(ϕ0 ∗ ϕr) �= 0}
satisfies mr ≥ 0; hence, mr = Mr = 0. This implies that φ0 ∗ φr = Aφ0.
Consider now φ−r ∗ (φ0 ∗φr) = A2φ−r; it is also equal to (φ−r ∗φr)∗φ0, which
is non zero if and only if r = 0. If ∗ is the usual product, taking x = φi and
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y = φj with i �= j in (2) implies Cn(φiφj) = 0 for all n, e.g. φiφj = 0 almost
everywhere. �
The domain argument used in the proof is illustrated in figure 3.

0 r

rmr Mr-r

mr Mr
rr

Mr+rmr-r

Figure 3: The diffusion of the analysis and reconstruction processes implies
a diffusion of the product operator.

B Proof of theorem 2

Proof. Necessary condition: if i + j ≤ N and (k, l) ∈ IN , then k ≥ i + 1
or l ≥ j + 1. Inserting f(t) = ti and g(t) = tj with i + j ≤ N in (4) proves,
with the Strang and Fix conditions, that (5) holds.

Sufficient condition: Denote by Tx the Taylor expansion of a function x
at point t with degree N . The left handside of (4) is decomposed as

|fg(t)− [(Eδf) ∗δ (Eδg)] (t)|
≤ |fg(t)−T(fg)(t)| (11)

+ |[Eδf ∗δ Eδ(g −Tg)] (t)| (12)

+ |[Eδ(f −Tf) ∗δ EδTg] (t)| (13)

+ |T(fg)(t)− [Eδ(Tf) ∗δ Eδ(Tg)] (t)| (14)

The definition of Tx implies that (11) is zero. A localized version of the
Strang and Fix approximation conditions and the localization of the product
implies that (12) is bounded by a term like (4) with k = 0 and l = N + 1.
Similarly, (13) is bounded by the sum of two terms with k = N +1 and l = 1
and l = N+1. Finally, the Strang and Fix condition Eδ(ti) = ti and condition
(5) imply that (14) is equal to [T(fg)−Tf ∗δ Tg] (t) =

�
(k,l)∈In

f (k)(t)k!×
g(l)(t)/l!× ((s− t)i ∗δ (s− t)j) (t) Together with the continuity of the prod-
uct, this proves that (14) is bounded by a term like in (4). �
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C Proof of lemma 2

Proof. Let TN+1 = tN × t. There exists a unique family (a0, . . . , aN) such
that

TN+1 =
i=N�

i=0

ait
i def

= Q(t) (15)

Let (z0, . . . , zN) the complex roots of the (usual) polynomial tN+1 − Q(t).
Then TN+1 is the Hermite interpolation of tN+1 at these points. We are going
to show that × is obtained by Hermite interpolation of the usual product
at (z0, . . . , zN). To do so, we only have to prove it is true for monomials
generated by ×.
The latter are defined recursively by TN+p = TN+p−1 × t. We assume that
TN+p−1 is the interpolation of tN+p−1 at (z0, . . . , zN). There also exist a
polynomial q(t) of degree < N and a real b such that TN+p−1 = q + btN .
Then

TN+p = qt + bTN+1

By assumption, q(zi) + b(zi)N = zN+p−1
i ; hence,

TN+p(zi) =
�
zN+p−1

i − b(zi)
N

�
zi + bTN+1(zi)

= zN+p
i − bzN+1

i − bzN+1
i = zN+p

i

which proves the interpolation result at the order 0. For higher orders k, the
induction becomes:

T (k)
N+p(zi) = (qt)(k)(zi) + bT (k)

N+1(zi)

=
�
TN+p−1t− btN+1

�(k)
(zi) + bT (k)

N+1(zi)

= (TN+p−1t)
(k) (zi)

= T (k)
N+p−1(zi)zi + T (k−1)

N+p−1(zi)

=
�
tN+p−1

�(k)
(zi)zi +

�
tN+p−1

�(k−1)
(zi)

=
�
tN+p

�(k)
(zi)

Conversely, one verifies that the Hermite interpolation is indeed associative
and that, by definition, it preserves the polynomials of degree ≤ N . �
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[10] S. Jaffard, Exposants de hölder en des points donnés et coefficients
d’ondelettes, C. R. Acad. Sci. Paris 308 (Série 1) (1989) 79–81.

[11] F. Chaplais, Product invariant piecewise polynomial approxima-
tions of signals, available at http://cas.ensmp.fr/~chaplais/FTP/
Preprints/PiecewisePoly.pdf.

[12] J. Stoer, R. Burlisch, Introduction to Numerical Analysis, Texts in Ap-
plied Mathematics, Springer-Verlag, New York, 1993.

20


