Inverse source problem in a 3D ball from best meromorphic approximation on 2D slices - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Electronic Transactions on Numerical Analysis Année : 2006

Inverse source problem in a 3D ball from best meromorphic approximation on 2D slices

(1) , (1) , (2)
1
2

Résumé

We show that the inverse monopolar or dipolar source problem in a 3D ball from overdetermined Dirichlet-Neumann data on the boundary sphere reduces to a family of 2D inverse branchpoint problems in cross sections of the sphere, at least when there are finitely many sources. We adapt from [7] an approach to these 2D inverse problem which is based on meromorphic approximation, and we present numerical results.
Fichier non déposé

Dates et versions

hal-00504716 , version 1 (21-07-2010)

Identifiants

  • HAL Id : hal-00504716 , version 1

Citer

Laurent Baratchart, Juliette Leblond, Jean-Paul Marmorat. Inverse source problem in a 3D ball from best meromorphic approximation on 2D slices. Electronic Transactions on Numerical Analysis, 2006, 25, pp.41-53. ⟨hal-00504716⟩
227 Consultations
0 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More