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Abstract

Reactive transport is a highly non-linear problem requiring the most efficient al-
gorithms to rapidly reach an accurate solution. The non-linearities are increased
and the resolution is even more demanding and CPU-intensive when considering
feedback of dissolution or precipitation reactions on hydrodynamic flow and trans-
port, commonly referred to as the variable porosity case. This is particularly true
near clogging, which leads to a very stiff systems and therefore small time-steps.
The operator-splitting approach is often cited is a widely use method to solve these
problems: it consists in solving sequentially the transport then the chemistry part
of the problem. Operator-splitting appears to be an accurate approach, provided
that the solution is iteratively improved at each time-step.

The paper details analytical solutions and test-cases for this class of problems.
They demonstrate that iterative improvement is then compulsory. They also helped
develop an improved estimator/corrector method which allows to reach convergence
faster and to reduce stiffness. The efficiency improvement is significant as illustrated
by an example of carbonation of a cement paste, a well-known problem that leads
to complete clogging of the interface layer.

Key words: reactive transport, chemistry, feedback, variable porosity, clogging,
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1 Introduction

Simulation of hydrodynamic transport of strongly reactive chemicals is gen-
erally computationally intensive and sometimes even prohibitively CPU-con-
suming (21). The usual modeling approach consists in solving the problem at
the scale of the Representative Elementary Volume (REV, (4)), i.e. on a scale
large enough to average out details of the pore structure. One of the benefits of
this approach is that it can tackle relatively large systems within reasonable
CPU limits. Examples include simulations of radioactive waste repositories
(13), stabilization of industrial wastes (12) and aquifer contamination (8; 23),
to cite only a few.

Dissolution and precipitation of solid phases tend to modify the volume and
the structure of the porous medium, thus modifying flow and transport prop-
erties (17). Modification of these properties cannot be explicitly simulated by
models based on the REV scale. They can be included, however, by means
of geometrical assumptions (simplified geometries for the porous medium,
(19; 16; 17)) or empirical laws (e.g. Kozeny-Carman for permeability (5; 9), or
Archie’s law of diffusion (2; 9)). No general relationship exists, and the field
is still an active research area.

The feedback of chemical reactions on transport properties adds another non-
linearity to the system, requiring efficient algorithms to reach an accurate
solution in reasonable computer time. The correct simulation of such feedback
systems is fundamental in numerous domains. For instance, some radioactive
waste geological storage scenarios involve clay-cement interfaces, which are
known to lead to a strong local reduction of the porosity (25; 11); failing to take
this phenomenon into account can seriously damage the quality of predictive
simulations. Other domains include for instance slag-heap leaching (where
pyrite oxidation can lead to the formation of high molar volume gypsum, e.g.
(15)) or transport in fractures (whose opening or closure are controlled by
calcite plugging, e.g. (20)).

The literature displays a variety of applications performed with several reac-
tive transport codes, including chemical feedback on transport, over the last
15 years (e.g. (24; 28; 14; 22)). However, efficiency and accuracy are still two
keys for these CPU-demanding resolutions. In this paper, the authors want
to precisely detail the coupling algorithms, with respect to both aspects, with
a focus on simulation with significant feedback of chemistry on hydrodynam-
ics. The first aim is to ensure accuracy, which is of the utmost importance
if reactive transport simulations are to be trusted for operational use. Then,
the efficiency issue is addressed with a view to keep resolution times at a rea-
sonable level. Throughout the process, applications are performed with the
versatile reactive transport code HYTEC (27), developed at Mines-ParisTech,
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and based on a sequential iterative algorithm whose formalism and equations
are displayed in section 2. Note however that the validation and the improve-
ments proposed on the sequential iterative approach would hold for any code
based on this formalism.

A methodology is developed to test the validity of the algorithms: two sim-
ple problems, with analytical solutions, are examined; comparing simulation
results to the analytical solutions offers a means of choosing the most suited
method. After the validation of the algorithm, some general observations show
a way to fine-tune it to improve its speed of convergence (section 3). Finally,
in section 4, an application with a strong feedback of porosity is proposed: the
simulation of cement carbonation. Beyond the simulation results, the effect of
the optimization is monitored as compared to the natural algorithm.

2 Verification of the accuracy of the algorithm

2.1 Theory of the sequential approach with feedback of chemistry on transport

Two main classes of algorithms are found in the literature: global implicit
and operator-splitting (29; 6). The latter, which consists in the sequential
resolution of the transport- and the chemical-part of the systems, has several
advantages: among which are the reduction of the size of the systems and the
possibility to develop the resolution modules separately (27). Here we focus on
the operator-splitting with iterative improvement: transport and chemistry are
repeatedly solved one after the other until convergence is reached with respect
to some fixed point. The method guarantees the accuracy of the solution
without time-step criteria (29).

The necessity to solve the coupled flow problem following an implicit approach
is not discussed in this paper. It seems unnecessary due to the difference
in relaxation time for the flow equation on the one hand, and the chemical
and transport equations on the other. It is therefore sufficient to solve the
flow equation at the beginning of the time-step, then to iteratively solve the
chemistry, transport and porosity problem. At the end of the time-step, the
permeability field is updated according to porosity changes, to prepare for the
resolution of the flow problem at the next time-step.

The usual approach to solving chemical systems is based on the principal com-
ponents formalism (18): the unknowns are limited to the total concentrations
c̃j of a limited number of basis species (components). The concentration of
all the species in the system can be computed with the chemical operator
C(c̃j)j components. The resolution of the advective/dispersive equation in porous
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media is then required for all the components (10; 18):

∂ωc

∂t
= T (c) −

∂ωc̄

∂t

T (c) = div
(

De ·
−−→
grad c − c ·

−→
U
)

where ω is the porosity, De the effective diffusion/dispersion coefficient (as

opposed to D = De/ω the pore diffusion), and
−→
U the local filter velocity.

The transport operator can be noted T . In this equation, we separate the
mobile part of the total concentration c (aqueous complexes, colloids) from the
immobile part c̄ (minerals, surface complexation, etc). Finally, the evolution
of the porosity is obtained by a balance of the volumes of all the minerals in
the system:

ω = 1 −
∑

m minerals

Vmωcm (1)

or equivalently

dω

ω
= −

df

1 + f
with f =

∑

m minerals

Vmcm (2)

where Vm is the molar volume (L·mol−1) and cm the concentration of mineral
m in mol·L−1 of solution. The concentration in mol·L−1 of medium, Cm, is
obtained as follows:

Cm = ωcm. (3)

The quantity Cm does not depend on the porosity, and can only change if the
mineral m dissolves or precipitates. On the contrary, cm evolves with mineral
reactions, but also with porosity changes (even if m is a non-reactive mineral).

The sequential resolution of these equations consists in numerically solving the
transport, then the chemistry. Accuracy is insured by iterating until the model
converges to a fixed point. We thus build a sequence for all the components
(c̃t+δt,p

j , ct+δt,p
j , c̄t+δt,p

j )j components, where p = 2i + 1 after a transport step and
p = 2i + 2 after a chemistry step:

(1) resolution of the transport for one time-step:

ωζct+δt,2i+1
j − ωtct

j

δt
= T (cj) −

ωζ c̄t+δt,2i
j − ωtc̄t

j

δt
(4)

where (ct
j, c̄

t
j) is the solution at the current time, (ct+δt,2i

j , c̄t+δt,2i
j ) is the

solution of the chemical module for the new time at the previous iteration,
and ζ stands for the time discretization for the porosity (see below).

(2) resolution of the speciation, using the local values of the total concen-
trations as given by the transport operator: C(ct+δt,2i+1

j + c̄t+δt,2i
j )∀j. The

speciation allows us to discriminate between fixed and mobile fractions
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(for transport purposes), and to calculate the mineral volumes (to feed
the porosity equations 1-2).

Equation 3 shows that the concentration of the minerals (even inert ones)
evolves due to porosity changes. For consistency’s sake, the mineral concen-
trations must therefore be updated to follow porosity evolutions. Porosity ap-
pears in equation 4: directly in the accumulation term, and indirectly through
the diffusion/dispersion coefficient and the velocity field. It is important to
determine whether the porosity can be used explicitly (i.e. updated after each
time step only, ζ = (t)) which is less CPU consuming: the transport param-
eters are then updated less frequently, and the transport matrices have only
to be recalculated at each time step rather than each coupling iteration. Or
alternatively, if a more robust implicit approach is required: ζ = (t + δt, 2i).
To answer this question, we developed two simple problems and their subse-
quent analytical solutions. Confronting the explicit/implicit choices in these
analytical solutions will be conclusive as to the accurate algorithm.

2.2 Reaction-only test case

The first case developed for this study can be solved by using the reactive-
transport formalism although no actual transport is involved. Diffusion is elim-
inated by insuring the absence of concentration gradients, i.e. appropriate ini-
tial and boundary conditions. The system contains a single mineral A(m) (of
concentration c̄), consisting of a single component A(aq) (of concentration c).
The growth of mineral A(m) is simulated with the following kinetic law:































A(m) ⇋ A(aq)
dωc̄

dt
= −kSs(ω)

(

1 −
c

K

)

dωc

dt
= −

dωc̄

dt

where K is the solubility constant of the mineral, k the kinetic rate (mol.m−2.s−1),
and Ss the specific surface area (m2.m−3 of rock).

The overall system (for a water-saturated media) is described by the following
system of equations:















dωc

dt
= −

dωc̄

dt
(conservation of mass)

=
1

Vm

dω

dt
(conservation of volume)

(5)

The detailed resolution, given in appendix A, is based on the direct substitu-
tion so that the porosity remains the only variable of the system, and uses a
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A=0c(t)=c0>K

L

t=0: c=K
c(L)=K

ω=ω0
De

Fig. 1. Schematic representation of the second analytical problem.

simple relationship between porosity and the evolution of the specific surface
area. The overall solution is then:

c(t) =
1/Vm − Kζ(t)

1 − ζ(t)
(6)

where ζ(t) =
c0 − 1/Vm

c0 − K
exp

[

−
k

K
(KVm − 1) S0t

]

Ss(ω) = ωS0

2.3 Reactive-transport test case

A second simple problem is proposed to test the behavior of the proposed
algorithm in the presence of (diffusive) transport. The chemical system is the
same as before, and a diffusive transport component has been added. The
system is described by the following equations:































A(m) ⇋ A(aq) with K = cequil.
dωc

dt
= kSs(1 − c/K)

∂ωc

∂t
=

∂

∂x

(

De(ω)
∂c

∂x

)

−
∂ωc̄

∂t

We carefully chose the initial and boundary conditions to simplify the reso-
lution (Fig. 1): initial solute concentration at equilibrium with A(m), over-
saturation imposed at the inlet. The system is therefore always at equilibrium
or over-saturated, which eliminates non-linearities due to the presence or ab-
sence of a mineral in an under-saturated state.

The system follows the system of equations:



















∂ωc

∂t
=

∂

∂x

(

De(ω)
∂c

∂x

)

−
∂ωc̄

∂t
∂ωc̄

∂t
= −kS(ω)

(

1 −
c

K

)

= −
1

Vm

∂ω

∂t

(7)

As in the previous problem, we need to inject information relative to the
evolution of the pore structure. To keep the system simple, we used S(ω) =
ωS0 and De(ω) = ωD0.
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The resolution is detailed in appendix B: it relies on a simplification of the
system, valid under small local gradients of porosity, which reduces the system
to a ODE equation of the aqueous concentration only. Porosity and mineral
concentrations are recovered in an independent step. Although quite complex
(Eq. B.4), the solution can be further simplified under quasi stationary state
(transport fast compared to chemistry), and yields the asymptotically simpli-
fied solution:











c(x, t) = AeΩx + Be−Ωx + K

ω(x, t) = ω0 exp
[

−VmkS0/K
(

AeΩx + Be−Ωx
)

t
]

(8)

with A =
c0 − K

1 − e2ΩL
, B =

c0 − K

1 − e−2ΩL
and Ω =

√

kSs0
/(KD0).

2.4 Implicit or explicit approach: model validation

The sequential iterative algorithm was implemented in the reactive code HY-
TEC, using the two methods: explicit (ζ = (t)) or implicit (ζ = (t + δt, 2i))
reference to the porosity in the discrete transport equation 4. Moreover, a
third, crude method was tested, where the mineral concentrations (in mol·L−1

of solution) were not updated for porosity changes.

The numerical results were compared to the analytical solutions in the two
problems. Realistic parameters were chosen, by assuming a medium composed
of quartz in a simplified silica system. A high initial concentration in A(aq)
was chosen so that the system remained oversaturated:























































K = 0.1 (as per mol·m−3, i.e. c = 10−4 mol·L−1 at equilibrium)

k = 2 × 10−8 mol·m−2·s−1

Vm = 4 × 10−4 m3·mol−1

S0 = 104 m2·m−3 of porous medium

c(0) = 1000 mol·m−3

The transport parameters were arbitrarily to D0 = 10−10 m2·s−1 and ω(0) =
0.79.

Figure 2 shows the analytical results compared with the different numerical
methods for the reaction-only test case. It is immediately clear that the crude
method leads to wrong results (even for inert minerals). The explicit method
is also in error with an amplitude about half of that of the crude method.
Only the implicit method gives excellent results, so that we now focus on this
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Fig. 2. Simple system without transport. Illustration of the evolution of solute con-
centration (top) and porosity (middle) for the analytical solution and three resolu-
tion algorithms: the crude method without mineral concentration update for poros-
ity, explicit and implicit porosity updates. The effect of the time step is given with
simulations using constant time step 1 h and 10 s for both formulation (bottom).
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Fig. 3. Second analytical problem, reactive transport, solute profile; the quasi sta-
tionary state analytical solution, and HYTEC numerical solution algorithm (using
the implicit algorithm for porosity feedback) for five different values of time: the
solute profile is indeed quasi independent of time.

method only. Curiously, reducing the time step does not seem to improve the
accuracy of the explicit (non-iterative) formulation (Fig. 2, bottom).

However, we still have to demonstrate that the implicit approach is correct in
really coupled transport and chemistry problems. Figure 3 shows the compar-
ison between the analytical and the implicit resolution results for the reactive
transport test case. The solute concentration profiles are superimposed for five
different values of time, demonstrating that the quasi stationary state approx-
imation for the solute concentrations is valid. The predicted profiles of mineral
A(m) and the porosity are in very good agreement with the analytical solu-
tion as illustrated by Fig. 4. As anticipated, the agreement with the analytical
solution deteriorates slightly for higher values of time: indeed, as the spatial
gradient of porosity builds up, the approximation on the cross-term of Eq. B.2
becomes invalid, introducing errors in the analytical solution.

The conclusions from the two analytical problems are straightforward: an accu-
rate solution requires a method which takes the porosity change into account
implicitly, i.e. at each coupling iteration. Accordingly, the correct coupling
algorithm completes the scheme outlined 2.1:

(1) Transport resolution:

∀componentsj,
ωt+δt,2ict+δt,2i+1

j − ωtct
j

δt
= T (cj) −

ωt+δt,2ic̄t+δt,2i
j − ωtc̄t

j

δt
(9)
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Fig. 4. Second analytical problem, reactive transport, mineral (top) and porosity
(bottom) profiles for five different values of time: analytical solution and numerical
solution by HYTEC, using the implicit algorithm for porosity feedback.

(2) Chemical speciation:

∀nodes, C(ct+δt,2i+1
j + c̄t+δt,2i

j )∀j (10)

provides the speciation and in particular the mineral concentrations, the
total fixed concentrations c̄t+δt,2i+2

i

(3) Modification of the porosity:

∀nodes, ωt+δt,2i+2 = f(ct+δt,2i+2
m ) (11)

and update of the mineral concentrations (in mol·L−1 of solution) to
accommodate the porosity change.

10



Steps 1-3 must be repeated until the fixed point is reached:

test ∀j, ||c̄t+δt,2i+2
j − c̄t+δt,2i

j ||∞ < ε × ||c̄t+δt,2i
j ||∞

where ε is the precision of coupling, and || · ||∞ refers to the spatial discretiza-
tion. The convergence test is performed after step 3, using the fixed fractions
c̄j. Convergence is immediate for mobile species, whose precise speciation does
not modify the total mobile fraction for the transport step, thereby not inter-
fering with the convergence of the coupling.

This algorithm is the base of the HYTEC resolution scheme. It also includes a
heuristic control of the time-step, based on the number of iterations required
to reach convergence. If this number is larger than a user-defined threshold
(default value 20), HYTEC continues with the resolution with a time-step
decreased by an user-defined increment (default 5%); alternatively, if conver-
gence is reached faster, the time-step is increased by the same increment.
When convergence is not reached after a limit (default 60 iterations), HYTEC
considers a failed convergence, goes back one time-step before resuming the
resolution with a 30% decreased time-step. All through the simulation, the
time-step remains bounded by the Courant criterion, which can be made slop-
pier by the user for semi-implicit or implicit time-discretization schemes for
the transport.

3 Optimization of the algorithm

The previous sections have demonstrated that an iteratively improved sequen-
tial approach is accurate for problems with feedback of chemistry on transport,
provided porosity changes are taken into account implicitly. The latter condi-
tion has a CPU consumption penalty. In this section, it is shown how CPU
time can be reduced by a careful choice of the starting point (or estimator) of
the fixed-point algorithm.

Remember that the algorithm consists in finding, for each time-step, the fixed
point of the sequence

(

(ct+δt,p
j )j component, (c̄

t+δt,p
j )j component, ω

t+δt,p
)

using equa-
tions 9-11. Just like any fixed-point algorithm, the starting point plays a role
in the speed of convergence: any value (close enough to the solution) is ac-
ceptable, provided that porosity and concentrations are consistent. A natural
choice, though not necessarily the best, is to use the result of the previous
time-step as the starting point for the calculations:











c̄t+δt,0 = c̄t

ωt+δt,0 = ωt
(12)
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Fig. 5. Schematic of the simple model to test the optimization of the fixed-point
initial estimator.
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Fig. 6. HYTEC results of the simple model to test the optimization of the fixed-point
initial estimator: evolution of the minerals and porosity in a single cell.

To investigate this point, we define a simple test system. We consider a column
of porous medium containing calcite and flushed with a sulphuric-acid solution
containing zinc (fig. 5). The considered transport mechanisms are advection,
dispersion and diffusion. Furthermore, we assume thermodynamic equilibrium
conditions; hence, calcite is dissolved and, due to the input of sulphates and
zinc, gypsum and smithsonite are formed. These minerals increase significantly
the total mineral volume of the column (17):

Calcite + Zn2+ + SO4
2−

⇋ Gypsum + Smithsonite.

The simulations show the formation of a reacting front, associated with a
decrease in porosity. A closer look at the numerical behavior of the system
(Fig. 6), reveals that the front changes cells only (at first glance) when the
calcite is completely exhausted.

The evolution of porosity on the one hand, and of the product porosity by
mineral concentrations (in mol·L−1 of solution) on the other hand, are linear in
time. This observation can be reproduced easily with an analytical resolution
of the discrete system. Based on this observation, an improved estimator can
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be proposed, i.e.:















∆t→(t+δt,0)(ω)

δt
=

∆(t−δt′)→t(ω)

δt′
∆t→(t+δt,0)(ωc̄)

δt
=

∆(t−δt′)→t(ωc̄)

δt′

or, more precisely:



















ωtκ+1,0 = ωtκ +
tκ+1 − tκ
tκ − tκ−1

(

ωtκ − ωtκ−1

)

c̄tκ+1,0 =
ωtκ

ωtκ+1,0
c̄tκ +

tκ+1 − tκ
tκ − tκ−1

ωtκ c̄tκ − ωtκ−1 c̄tκ−1

ωtκ+1,0

(13)

This starting point provides a (much) closer estimate of the solution. In the
above problem, this estimator is actually exact as long as the front does not
change cells.

4 Application: cement carbonation

After the demonstration on this specific test-case, we applied the iterative
algorithm, with the improved estimator, on more complex systems. The dif-
ference in computational effort for the normal and the improved estimators
will therefore be highlighted. One such system is the simulation of cement car-
bonation: the problem is inherently difficult for reactive transport codes due to
strongly coupled chemical and hydrodynamic processes. The hydrolysis of the
cement phases (hydrated calcium silicates CSH, calcium sulpho-aluminates)
leads to a release of calcium which diffuses towards the interface; there, it
reacts with the carbonates of the leaching solution. Accordingly, a thin but
nearly non-porous calcite crust forms at the interface (3; 26).

HYTEC, with the implicit algorithm and the improved estimator, was used
to simulate the case of a simplified Portland type cement (CEM I), where
the CSH gel continuum is represented by three discrete characteristic min-
erals with decreasing Ca/Si ratio: 1.8, 1.1, and 0.8 (Tab. 1). This simplified
description of the gel continuum has been introduced by (1): each discrete
CSH mineral equivalent accounts for a behavioral zone of the CSH gel in the
Ca-Si-pH graph; the higher the calcium content, the higher the equilibrium
pH. Initial cements, containing portlandite, have a high pH (around 12.5), and
their hydrolysis leads to lower calcium-content phases and lower equilibrium
pH.

In this model, degradation is due to the contact with a fluid at pH = 7
and [HCO−

3 ] = 10−3 molal. As expected under these conditions the cement
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mineral formula log K molar volume

Portlandite ⇋ Ca2+ − 2H+ + 2H2O -22.56 33.1 ml·mol−1

CSH1.8 ⇋ 1.8Ca2+ − 3.6H+ + SiO2(aq) + 3.6H2O -32.58 86.7 ml·mol−1

CSH1.1 ⇋ 1.1Ca2+ − 2.2H+ + SiO2(aq) + 2.2H2O -17.00 63.5 ml·mol−1

CSH0.8 ⇋ 0.8Ca2+ − 1.6H+ + SiO2(aq) + 1.6H2O -11.07 53.5 ml·mol−1

Calcite ⇋ Ca2+ − 2H+ + HCO−

3 -1.85 36.9 ml·mol−1

Table 1
Chemical properties of the mineral phases in the cement carbonation simulation.

hydrolyzes with a characteristic sequence of mineral fronts with a decreas-
ing calcium content and pH (Fig.7). The overall result is an increase in the
porosity in the profile for more degraded cement. The calcium leached from
the degraded cement diffuses towards the interface with the attack solution,
where the carbonate content allows for the precipitation of a thin calcite crust.
Calcium is thus re-concentrated locally from the larger leached area, leading to
a local and sharp decrease of the porosity. The system is numerically hard to
handle, since it leads to a very high concentration of calcite (up to 27 mol·L−1

of rock) and a porosity which drops down to nearly 0. As a result, the mineral
concentration expressed in mol·L−1 of solution (concentration in mol·L−1 of
rock divided by the porosity) tends towards infinity and introduces a numerical
instability of type 0 ×∞ in the accumulation term δωc̄/δt.

The performance of the simple estimator (Eq. 12) and of the improved one
(Eq. 13) was monitored via the number of coupling iterations required to
reach convergence at each time-step. The improved estimator requires a single
iteration per time-step, except at some points when the front moves to an
adjacent cell: here, the number of iterations reaches about 20. Indeed, when
the front changes cells, the mineral assemblage changes in two cells over the
time-step: complete depletion of the primary mineral in the first cell, creation
of new secondary minerals in the second cell. In these conditions, the improved
estimator leads to inaccurate predictions, and iterations are required to reach
convergence.

On the contrary, the simple estimator constantly requires about 20 iterations,
except at times when the fronts change cells, in which case it is reduced to a few
iterations (note that the number of 20 iterations is a consequence of the code
time-step management: HYTEC automatically reduces the time-step as soon
as the number of iterations exceeds the threshold of 20). Indeed, the simple
estimator basically states that no reaction occurs between t and t + dt, the
reactions being corrected over the coupling iterations. Consequently, the higher
the amount of reacting material, the higher the number of iterations. When
the reacting front changes cells, the amount of reaction is shared between the
two cells, and since the system is solved globally, the coupling sees lower local
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Fig. 7. Profiles of main mineral phases and porosity during degradation and car-
bonation of a cement. A sharp drop in the porosity is observed at the cement-fluid
interface.

reacting quantities, so that the number of iterations is lower.

The observations are illustrated by Figure 8, i.e. the cumulative number of iter-
ations required to complete the simulation. Note that the cumulative number
of iterations for the simple estimator soars when sealing becomes effective at
the interface. Not only does it require a large number of iterations per time-
step, but the time-step size is also dramatically reduced due to the automatic
time-step adjustment to keep the number of iterations at a reasonable level.
With the higher performance of the improved estimator, no noticeable numer-
ical difficulties emerge, even after nearly complete clogging. Moreover, it is
interesting to note that, as diffusivity drops by several orders of magnitude at
the interface, the cement becomes protected from further degradation, leading
to a strong decrease in hydroxide release. The system becomes almost com-
pletely sealed. The remaining degradation of the portlandite creates a rise
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Fig. 8. Number of iterations required to solve the cement carbonation problem for
two types of estimators: cumulative iterations during the simulation for the natural
and the improved estimators.

in the Ca/Si ratio of the previously hydrolyzed CSH until full equilibrium
is reached. Subsequently, a limited form of self-healing is predicted by the
modeling (Fig. 9).

5 Conclusions

Scientists involved in reactive transport modeling are always confronted by a
trade-off between accuracy and efficiency. This paper deals with both aspects,
proposing novel analytical solutions for strongly reactive test-cases with vari-
ations of porosity due to mineral dissolution and/or precipitation. The test-
cases can be simulated with any reactive transport model. The application of
HYTEC, which uses implicit and explicit methods to deal with porosity varia-
tions, leads to the unambiguous conclusions that only the implicit implemen-
tation produces accurate solutions for any time-step size. Implicit methods,
however, are CPU consuming, hence optimization remains a critical issue.

The operator-splitting method has several interesting advantages provided
iterations are used to achieve an accurate solution. The better the estimate
of the unknowns (e.g. immobile fractions) at the beginning of each time-step,
the less iterations are required. Instead of estimating the unknowns based on
the results of the previous time-step, we propose to estimate the unknowns by
the values which they are predicted to reach at the end of the next time-step.
The method, which is simple and based on the simulation history only, leads
to a dramatic decrease in the number of iterations required for each time-step:
a single iteration is often enough. It is worth noting that although developed
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Fig. 9. Simulation of CEM I cement carbonation, illustrating profiles of minerals
and porosity and a partial self-healing of the cement due to the formation of a
calcite crust.
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along a specific simple test-case, the efficiency is still improved for applications
on more complex systems, including several sharp minerals fronts, or smoother
fronts due to sorption or kinetics.

The new estimation method has been implemented in HYTEC and applied
to many different test cases, among which a few are outlined in this paper. It
is observed that the convergence rate is improved for nearly all cases, what-
ever reaction processes are involved. HYTEC sometimes reduces the time-
step when it encounters stiff or numerically difficult points in the simulation.
At these specific moments, the conservative estimator is often more efficient.
Hence, the model should be able to detect these moments and adapt the esti-
mation method as a function of these events.
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A Analytical resolution of the reaction only test-case

The reaction only test-case is described by the following equations:















dωc

dt
= −

dωc̄

dt
(conservation of mass)

=
1

Vm

dω

dt
(conservation of volume)

(A.1)

The system of equations, and its subsequent resolution, would still hold in a
stationary unsaturated case: porosity should then be multiplied by the reduced
water saturation in all terms of the equation. The resolution of this case is
obtained in several steps. First, equation A.1 shows that ωc̄ is a function of ω
only, given by an ordinary differential equation (ODE). Second, by developing
the ωc time derivative, it is possible to separate c and ω in a second ODE.
The two equations are readily solved:

ω(t) = ω0
1 − c0 Vm

1 − c Vm

(A.2)

ω(t)c̄(t) = ω0c̄0 −
ω − ω0

Vm

(mol·L−1 medium) (A.3)
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Finally, the aqueous concentration c can be expressed in an ODE, by substi-
tuting the kinetic law in the system, and eliminating the porosity ω. We then
obtain the following reduced equation:

dc

dt
=

kSs(ω)

ω
(1 − Vm c) (1 − c/K) .

By using a very simple law to describe the variation of the specific surface
area, i.e. Ss(ω) = ωS0, we can obtain the following solution:

c(t) =
1/Vm − Kζ(t)

1 − ζ(t)
(A.4)

where ζ(t) =
c0 − 1/Vm

c0 − K
exp

[

−
k

K
(KVm − 1) S0t

]

Ss(ω) = ωS0

B Analytical resolution of the reactive transport test-case

The system follows the system of equations:



















∂ωc

∂t
=

∂

∂x

(

De(ω)
∂c

∂x

)

−
∂ωc̄

∂t
∂ωc̄

∂t
= −kS(ω)

(

1 −
c

K

)

= −
1

Vm

∂ω

∂t

(B.1)

As in the previous problem, we need to inject information relative to the
evolution of the pore structure. To keep the system simple, we used S(ω) =
ωS0 and De(ω) = ωD0. Accordingly, the system can be rewritten as follows:



















ω
∂c

∂t
+ c

∂ω

∂t
= ωD0

∂2c

∂x2
+ D0

(

∂ω

∂x

)(

∂c

∂x

)

+
1

Vm

∂ω

∂t
∂ω

∂t
= kVmS0ω

(

1 −
c

K

)

The first equation is transformed by gathering the differential terms for con-
centration on the one hand and porosity on the other hand, then by substi-
tuting the second equation in the final term for porosity. This leads to:

ω
∂c

∂t
= ωD0

∂2c

∂x2
+ D0

(

∂ω

∂x

)(

∂c

∂x

)

+ kVmS0ω
(

1

Vm

− c
)(

1 −
c

K

)

Let us assume that the cross-term of the derivative is negligible:

D0

(

∂ω

∂x

)(

∂c

∂x

)

≈ 0 (B.2)
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This is certainly true at the very beginning of the porosity evolution, when
its spatial gradient is still small —an assumption which has to be verified a

posteriori. Accordingly, the system can be simplified as follows:



















∂c

∂t
= D0

∂2c

∂x2
+ kVmS0

(

1

Vm

− c
)(

1 −
c

K

)

∂ω

∂t
= kVmS0ω

(

1 −
c

K

) (B.3)

The second equation is a straightforward ODE of c, which is solved straightfor-
wardly. In the first equation, the porosity has completely disappeared. Note
that the obtained partial derivative equation is close to the heat equation,
with a particular solution c∞(x, t), i.e. an associated homogeneous equation.
The reduced equation is solved by using its eigenvalues composed in a Fourier
series (7). Finally, initial and boundary conditions constrain the parameters
of the Fourier series. The solution for the system becomes:



















































c(x, t) = c∞(x) −
∞
∑

n=1

bn sin
(

nπ

L
x
)

e
−

(

D0
n
2

π
2

L2
+kS0/K

)

t

ω(x, t) = ω0 exp



kS0Vm/K
(

(K − c∞(x))t . . .

−
∞
∑

n=1

bn

D0
n2π2

L2 + kS0/K
sin

(

nπ

L
x
)

e
−

(

D0
n
2

π
2

L2
+kS0/K

)

t
)





(B.4)

with















































































c∞(x) = AeΩx + Be−Ωx + K

A =
c0 − K

1 − e2ΩL

B =
c0 − K

1 − e−2ΩL

Ω =
√

kSs0
/(KD0)

∀n ∈ N ∗, bn = −2
K − c0

nπ
[(−1)n − 1] . . .

−
2nπ

Ω2L2 + n2π2

[

A(eΩL(−1)n − 1) + B(e−ΩL(−1)n − 1)
]

The series are absolutely convergent since the coefficients bn accept an equiv-
alent in ζ/n. The terms of the series therefore have an equivalent in ξ

n3 e
−σn2t;

a very fast convergence is thus guaranteed, especially for large values of time
t.

For cases where a stationary state of the aqueous species is rapidly reached
(compared to the characteristic time of mineral and porosity variations), the
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solution can be asymptotically simplified:











c(x, t) = c∞(x)

ω(x, t) = ω0 exp
[

−VmkS0/K
(

AeΩx + Be−Ωx
)

t
]
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