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Abstra
tMarkov 
hains Monte-Carlo (MCMC) methods are known to produ
e samples of virtuallyany distribution. They have already been widely used in the resolution of non-linear inverseproblems where no analyti
al expression for the forward relation between data and model pa-rameters is available, and where linearization is unsu

essful. However, in Bayesian inversion,the total number of simulations we 
an a�ord is highly related to the 
omputational 
ost of theforward model. Hen
e, the 
omplete browsing of the support of the posterior distribution ishardly performed at �nal time, espe
ially when the posterior is high dimensional and/or mul-timodal. In the latter 
ase, the 
hain may stay stu
k in one of the modes. Re
ently, the ideaof making intera
t several Markov 
hains at di�erent temperatures has been explored. Thesemethods improve the mixing properties of 
lassi
al single MCMC. Furthermore, these meth-ods 
an make e�
ient use of large CPU 
lusters, without in
reasing the global 
omputational
ost with respe
t to 
lassi
al MCMC.KeywordsInverse problem ; Bayesian inversion ; MCMC ; intera
ting Markov 
hains ; tempering ;History mat
hing
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1 Introdu
tionMonte-Carlo methods are be
oming in
reasingly important for the solution of nonlinear in-verse problems. Typi
ally, the inverse problem is formulated as a sear
h for solutions �ttingthe data within a 
ertain toleran
e, given by data un
ertainties. In a non-probabilisti
 set-ting this means that we sear
h for solutions with 
al
ulated data whose distan
e from theobserved is less than a �xed, positive number. In a Bayesian 
ontext, the toleran
e is soft: alarge number of samples of statisti
ally near-independent models from the a posterior proba-bility distribution are sought. Su
h solutions are 
onsistent with data and prior information,as they �t the data within error bars, and adhere to soft prior 
onstraints given by a priorprobability distribution.Pre
isely, we 
onsider the study of a system X ∈ X , on whi
h we have an indire
t measure-ment d, that is fun
tion of the state of X, modeled by F (X), and some a priori informationunder the form of the prior distribution P(X). We also 
onsider that the measurement d isa�e
ted by an error and that we know how to simulate F up to an approximation error, botherrors being a

ounted for by P(d|X). We also de�ne the joint distribution P(d,X). Then,assuming that all these distributions admit a density with respe
t to the Lebesgue measure,denoted f(·), the 
onditional density of X with respe
t to d takes the following form:
f(X|d) =

f(d|X)f(X)
∫

X f(d,X)dX
. (1)This is the Bayesian formulation of inverse problem and P(X|d), whose density f(X|d), isthe posterior distribution, see [1℄. The formula (1) shows that this problem 
an be viewedas a 
lassi
al statisti
al inferen
e problem, where we want to sample independent realizationsfrom the posterior distribution. Note that the normalization 
onstant in (1) is generally in-tra
table in high-dimensional problems. Therefore, we 
onsider that the posterior is knownup to a 
onstant, being de�ned from the prior knowledge on the system studied and the datawith its asso
iated measurement error.There exists several methods for solving (1) su
h as the Kitanidis-Oliver algorithm (see[2℄ and [3℄), developed for petroleum engineering appli
ations and the neighbourhood algo-rithm ([4℄ and [5℄), developed for geophysi
al inverse problems. In spite of its universality thespeed of 
onvergen
e of the �rst one is 
ontroversial: it 
onsists in performing a large numberof optimizations with an observed datum perturbed a

ording to its measurement error. Itis parti
ularly di�
ult to know how many optimizations should be performed. The se
ondone seems to be limited for low-dimensional problems: it 
an be seen as a geometri
 versionof an iterated importan
e sampling s
heme (see e.g. [6℄, 
hapter 14). This arti
le fo
us onMonte-Carlo Markov 
hains (MCMC) methods for their universality and the relative ease oftheir implementation.MCMC methods suit indeed parti
ularly for this problem, as they are known to produ
esamples of virtually any posterior distribution. Two problems may arise then. On one hand,the dimension of the problem may be so large that the 
hain has to be run for an intra
tablenumber of iterations to 
onverge and to a
hieve an e�
ient sampling of the posterior, we saythat they have weak mixing properties. On the other hand, an evaluation of the forwardoperator F 
an be very 
omputer demanding so that the pra
titioner wishes to minimizethe number of iterations. Moreover, when the posterior has several dis
onne
ted modes in ahigh-dimensional spa
e, whi
h is often the 
ase in nonlinear Bayesian inversion, the problemof exploring the whole support of the posterior is a di�
ult one. It 
an be shown that evenfor very simple problems most 
lassi
al Markov 
hain algorithms 
an fail at identifying themain modes of the posterior, be
ause of their la
k of mixing (see [7℄).2



We expose a method to improve the global e�
ien
y of the Markov 
hain by generating a
olle
tion of 
hains in parallel at di�erent temperatures and allowing them to intera
t. Thismethod is not more 
omputer demanding than 
lassi
al MCMC sin
e it 
an be easily paral-lelized.This paper aims at providing resear
hers and engineers with some re
ipes to apply inter-a
ting MCMC methods. Thus, it begins in se
tion 2 with basi
s for MCMC methods, someexamples of 
lassi
al algorithm and earlier attempts to improve mixing properties like anneal-ing and tempering te
hniques, whi
h rely on the same basi
 prin
iples as intera
ting MCMCte
hniques, exposed in se
tion 3. In se
tion 4, we will show an appli
ation to a reservoirengineering problem. The paper ends with some 
on
lusions and perspe
tive of future work.2 Markov 
hains Monte-Carlo methodsMCMC, introdu
ed by Metropolis et al. [8℄, is a popular method for generating samples fromvirtually any distribution π de�ned on (X ,B(X )), where B(X ) stands for the Borel sets of X .In parti
ular there is no need for the normalizing 
onstant of π to be known and the spa
e
X ⊆ R

d (for some integer d) on whi
h it is de�ned 
an be high dimensional. We re
all heresome 
lassi
al results on MCMC methods. For a 
omprehensive review of MCMC, see [6℄,
hapters 6 to 13. For a more detailed a

ount on Markov 
hains theory, see [9℄.2.1 Prin
iplesThe method 
onsists in simulating an ergodi
 Markov 
hain {Xn, n ≥ 0} on X with transitionprobability P su
h that π is a stationary density for this 
hain, i.e. ∀A ∈ B(X ):
∫

X
P (x,A)π(x)dx = π(A). (2)Su
h samples 
an be used e.g. to 
ompute integrals

π(h) =

∫

X
h(x)π(x)dx, (3)estimating this quantity by

Sn(h) =
1

n

n
∑

i=1

h(Xi), (4)for some h : X → R. A very useful 
on
ept in 
onstru
ting ergodi
 Markov 
hains is re-versibility. A Markov 
hain is reversible if it satis�es the detailed balan
e 
ondition:
P (x, dy)π(dx) = P (y, dx)π(dy). (5)This means that, if started in stationarity, the Markov 
hain has the same 
han
e of startingat x and jumping to y as starting at y and jumping to x.We illustrate the prin
iples of MCMC with the Metropolis-Hastings (MH) update. Itrequires the 
hoi
e of a proposal distribution q. The role of q 
onsists in proposing potentialtransitions for the Markov 
hain. Given that the 
hain is 
urrently at x, a 
andidate y isa

epted with probability α(x, y) de�ned as:

α(x, y) =

{

min
{

1, π(y)
π(x)

q(y,x)
q(x,y)

} if π(x)q(x, y) > 0,

1 otherwise. (6)3



Otherwise, it is reje
ted and the Markov 
hain stays at its 
urrent lo
ation x. The transitionkernel P of this Markov 
hain takes the form, for (x,A) ∈ X × B(X ):
P (x,A) =

∫

A
α(x, y)q(x, y)dy + 1A(x)

∫

X
(1 − α(x, y))q(x, y)dy. (7)The Markov 
hain de�ned by P is reversible with respe
t to π and therefore admits π asinvariant distribution. Conditions on the proposal distribution q that guarantee irredu
ibilityand positive re
urren
e are easy to meet and many satisfa
tory 
hoi
es are possible.2.2 Some examples of Metropolis-Hastings samplersThe arbitrariness of the 
hoi
e of q(x, ·) allows 
onsiderable freedom to design a multitudeof di�erent 
hains, ea
h with stationary distribution π, although in the Bayesian inversionframework, q should rely on the a priori distribution. Some examples in
lude (see [6℄, 
hapter7, for more examples):1. the independent sampler (IMH): q(x, y) = q(y), where q is generally the prior in Bayesianinversion,2. the symmetri
 in
rements random-walk sampler (SIMH): q(x, y) = q(|y − x|), where q
an be a zero-mean version of the prior,3. the Langevin sampler (LMH): assuming that π is di�erentiable on X , it allows to takeadvantage of the gradient information to give the sampling dire
tion, q takes the form:

q(x, y) ∼ N
(

x +
h2

2
∇ log(π(x)), h2Id

)

, (8)where h is a parameter to 
hoose a

ording to e.g. [10℄ or [11℄. Note that a bad 
hoi
eof h 
an indu
e errati
 behaviour of the 
hain,4. The adaptive algorithm of [12℄ (ASIMH): In this algorithm, y is proposed a

ording to
qθn

(x, ·) = N (x,Γn), where θ = (µ,Γ). We also 
onsider a non-de
reasing sequen
e ofpositive step sizes {γn}, su
h that ∑∞
n=1 γn = ∞ and ∑∞

n=1 γ1+δ
n < ∞ for some δ > 0.In pra
ti
e, we generally use: γn = 1/n, as suggested in [12℄. The parameter estimationalgorithm takes the following form:

µn+1 = µn + γn+1 (Xn+1 − µn) , n ≥ 0,

Γn+1 = Γn + γn+1

(

(Xn+1 − µn) (Xn+1 − µn)tr − Γn

)

, (9)5. The Gibbs sampler: Here X = X1×. . .×Xd, and q = qi leaves all 
oordinates �xed ex
eptthe ith one, whi
h it proposes a

ording to the 
onditional distribution (xi|{xj}j 6=i). Thisimplies that α(x, y) = 1 for all x and y, so there are no reje
tions. If the resulting ith
omponent Gibbs sampler is 
alled Pi, then these 
omponents 
an be 
ombined to yieldthe random-s
an Gibbs sampler whi
h is the average PRS = 1
d(P1 + . . . + Pd), or thedeterministi
-s
an Gibbs sampler whi
h is the produ
t PDU = P1 · · ·Pd.2.3 CommentsOne of the problems with Metropolis-Hastings algorithms is the abundan
e of 
hoi
e avail-able for 
hoosing the proposal distribution q(x, ·). For instan
e even if the type of algorithm4



(perhaps the SIMH) has been 
hosen, it is ne
essary to s
ale the proposal varian
e to beappropriate for π(·). Su
h a problem is known as a s
aling problem. To make this questionmore 
on
rete, 
onsider the following problem. Suppose that q(x, ·) is distributed as the d-dimensional normal distribution N (x, σ2Id), for some σ2 > 0. We re
all that the a

eptan
eprobabilities for this algorithm are given by (6). For very small values of σ2, small jumps areattempted by the algorithm, and be
ause of the form of (6), these moves are almost alwaysa

epted. The Markov 
hain mixes very slowly be
ause its in
rements are so small. On theother hand, if σ2 is 
hosen to be very large, long distan
e jumps are attempted by the algo-rithm, most of whi
h are reje
ted. The algorithm therefore spends long periods of time in thesame state, and thus the algorithm still 
onverges slowly. For this problem, "very large" and"very small" have to be interpreted in a way related to the parti
ular form of π. It seemsreasonable that "moderate" values of σ2 should be preferred. However, it is di�
ult to seehow to �gure out what values are "moderate", espe
ially if π is very 
ompli
ated. In Bayesianinversion 
ontext, the random walk type algorithms, like the SIMH or the LMH, generally failat identifying di�erent modes. In large dimensional spa
e, the s
aling fa
tor generally has tobe "small" so as to get an a

eptable a

eptan
e rate (6). Therefore, these two algorithmsperform generally a lo
al exploration and are hardly able to jump from one mode to another.We will then refer to them as "lo
al" samplers. Note that they are also generally really slowto 
onverge towards the stationary regime in Bayesian inversion 
ontext.Conversely, the IMH does not need any tuning. It will explore largely the surfa
e of theposterior distribution and we will refer to it as a "global" sampler. Nevertheless, in pra
ti
alappli
ations, unless q is the posterior distribution, the transitions will obviously almost alwaysbe reje
ted.Finally, we 
an noti
e here that the 
hain generated by the adaptive algorithm is no longerhomogeneous, but it 
an be proved (see [12℄, [13℄ and [14℄ in a more general framework) thatit has the 
orre
t ergodi
 properties. The idea of adaptive sampling is to improve the pro-posal e�
ien
y, making it as 
lose as possible to the posterior density. However, it should bestressed here that the algorithm presented above generally fails in multi-modal 
ontext for alow number of iterations (see e.g. [7℄). Regarding the Gibbs sampler, it does not seem to bewell adapted to the Bayesian inversion problem: the important number of 
alls of the forwardmodel limits its relevan
y.Due to the sequential nature of MCMC algorithm and to ta
kle multi-modality problems,MCMC pra
titioners generally use several 
hains that they run in parallel. By simulatingseveral 
hains, variability and dependen
e on the initial value are redu
ed and it should beeasier to 
ontrol 
onvergen
e to the stationary distribution by 
omparing the estimation, us-ing di�erent 
hains, of quantities of interest. However, good performan
es of these parallelmethods require a degree of a priori knowledge on the distribution of interest π, in orderto 
onstru
t an initial distribution on X whi
h takes into a

ount the features of π (modes,shape of high density regions, et
.). This is rarely the 
ase in Bayesian inversion. Moreover,in highly non-linear setups, like in Bayesian inversion, a slow mixing 
hain will presumablystay in the neighborhood of the starting point with a high probability (see [6℄ 
hapter 12 fora more thorough dis
ussion).Due to the 
omplexity of the posterior distribution (e.g. multi-modality and/or dis
onne
tedsupport) in Bayesian inversion problems and 
lassi
al limitations of MH algorithms, othermethods than 
lassi
al MH algorithm should be investigated. Simulated annealing and tem-pering, whi
h are presented in the next paragraph, 
onsists in studying modi�ed versions ofthe posterior.
5



2.4 Simulated annealing and temperingThe simulated annealing algorithm has been introdu
ed by [8℄, then generalized by [15℄ foroptimization problems. It 
an be applied to both optimization and simulation problems (see[6℄ and referen
e therein). The simulated tempering has been introdu
ed independently in[16℄ and [17℄.The fundamental idea of these algorithms is that a 
hange of s
ale, named temperature, allowslarger moves on the surfa
e of the distribution to explore, 
ompared with 
lassi
al MCMCmethods. Indeed, this 
hange of s
ale allows to avoid the 
hain to remain trapped in a lo
almode.The name and inspiration of the �rst one 
ome from annealing in metallurgy, a te
hniqueinvolving heating and 
ontrolled 
ooling of a material to in
rease the size of its 
rystalsand redu
e their defe
ts. The heat 
auses the atoms to be
ome unstu
k from their initialpositions (a lo
al minimum of the internal energy) and wander randomly through states ofhigher energy; the slow 
ooling gives them more 
han
es of �nding 
on�gurations with lowerinternal energy than the initial one. Conversely the tempering is a brutal 
ooling followed by aa 
ontrolled reheating of the work pie
e to a temperature below its lower 
riti
al temperature.Pre
ipitation hardening alloys, like many grades of aluminum and super alloys, are temperedto pre
ipitate intermetalli
 parti
les whi
h strengthen the metal.These two methods aim parti
ularly at generating samples from Gibbs distribution.De�nition 2.1 A X -valued random �eld X, is a Gibbs �eld of energy E, if its probabilitydensity fun
tion (with respe
t to the Lebesgue measure) is:
f(x) =

1

Z e−E(x), Z =

∫

X
e−E(x)dx, (10)named Gibbs density.For pra
ti
al problems, the 
onstant Z is generally intra
table due to the dimension of X .Note that in a wide variety of inverse problems, the posterior distribution (1) takes the form(10); for instan
e when both prior and measurement error are assumed Gaussian. Note alsothat simulated annealing and tempering are not 
on�ned to 
ope with Gibbs distributions.We present here both algorithms in this framework for sake of simpli
ity. For other kind oftarget distributions π, the pra
titioner has to 
onsider �attened versions given by πT = π1/T .2.4.1 Simulated annealingGiven a positive temperature T , a Markov 
hain X is generated from the following Gibbsdensity:

πT (x) ∝ exp (−E(x)/T ). (11)The simulated annealing is performed by gradually lowering the temperature T from ahigh value to near-zero. Close to T = 0 the Gibbs distribution approximates a delta fun
tionat the global minimum for E(x) (if it is unique). For simulation purposes, the 
ooling 
an bestopped at the value T = 1.This algorithm 
an be viewed as a non-homogeneous version of the MH algorithm. In-deed, sin
e T de
reases along the algorithm, the kernel of the 
hain varies with time. Classi
altheoreti
al results on Markov 
hains does not apply for this algorithm. Heuristi
 rules are gen-erally applied to ensure the validity of simulated annealing: the starting temperature must behigh enough and its de
rease slow enough. A 
onvergen
e result exists, for optimization pur-pose, with the 
ondition that T de
reases as 1/ log(n). In pra
ti
e, a geometri
ally de
reasingsequen
e is generally used. 6



2.4.2 Simulated temperingThe prin
iple of simulated tempering is linked to the simulated annealing one in the sense thatwe will again 
onsider Gibbs distributions s
aled by a temperature parameter T . However,this algorithm aims at sampling from a Gibbs distribution π rather than minimizing theenergy of the system. We 
onsider here a �nite sequen
e of temperatures and the asso
iatedGibbs distributions. In this algorithm, we authorize the 
hain to 
hange temperature levela

ording to a given probability. This will allow the 
hain to go ba
k to higher temperatures,es
aping eventual lo
al modes of the target distribution, that results in better mixing.We �rst de�ne an in
reasing sequen
e of temperatures 1 = T0 < . . . < TK , with its asso
iatedGibbs densities πi(x) ∝ e
−

E(x)
Ti , an auxiliary {0, . . . ,K}-valued variable M , and the jointdistribution:
µ(x,m) = ρmπ(x),

K
∑

i=0

ρm = 1. (12)We also de�ne the probabilities pU and pD of moving "up", from m to m + 1, and "down",from m to m − 1, with only T 
hanging, the 
hain being at temperature Tm, and the proba-bility of 
hoosing a �xed level move (1 − pU − pD).The prin
iple is to simulate a X × {0, . . . ,K}-valued 
hain (Xn,Mn). Denoting respe
tively
qi→i+1(Xn+1|Xn = xn) and qi+1→i(Xn+1|Xn = xn) the probabilities of transition proposi-tion towards the superior and the inferior temperature level, the a

eptan
e probability of atransition from Ti to Ti+1 is proportional to:

ρi→i+1(xn, xn+1) =
pD

pU

πi+1

πi

qi→i+1(Xn+1 = xn+1|Xn = xn)

qi+1→i(Xn+1 = xn+1|Xn = xn)
. (13)To maintain the detailed balan
e 
ondition, it is then ne
essary that ρi+1→i(xn+1, xn) =

1/ρi→i+1(xn, xn+1) and to 
hoose the proposition distributions qi→i+1(Xn+1|Xn = xn) and
qi+1→i(Xn+1|Xn = xn) a

ordingly. Still, it is important to noti
e that (13) depends on thenormalization 
onstants of πi+1 and πi. We 
an bypass this di�
ulty by designing an equalnumber of moves from m to m+1 and from m+1 to m and by a

epting the entire sequen
eas a single proposal, thus 
an
eling the normalizing 
onstants in the a

eptan
e probability,as des
ribed e.g. in [18℄.2.4.3 CommentsAttempts to improve mixing properties of the 
hain by simulated annealing fail generallybe
ause of the monotonous de
rease in temperature; if the 
hain gets in a lo
al mode, it maybe impossible to es
ape it if the temperature is already too low.Con
erning the simulated tempering, the potential gain in a better exploration of thesupport of the target distribution, so as to say, a better mixing, does not seem to 
ompensatefor the in
reased amount of forward operator evaluations for inverse problems (2K bigger, forthe s
heme presented above). However, the presentation of this method is a good introdu
tionto the intera
ting Markov 
hains algorithms exposed in the next se
tion.3 Parallel intera
ting Markov 
hainsThe prin
iple of making intera
t Markov Chains �rst appears in [19℄ under the name paralleltempering (PT). It has been mostly applied in physi
o-
hemi
al simulations, see [20℄ andreferen
es therein. It is known in the literature under di�erent names su
h as: ex
hange7



Monte-Carlo, Metropolis 
oupled-
hain, see [21℄ for a review. The prin
iple of PT is tosimulate a number (K + 1) of repli
a of the system of interest by MCMC, ea
h at a di�erenttemperature, in the sense of the simulated annealing, and to allow the 
hains to ex
hangeinformation, swapping their 
urrent state. The high temperature systems are generally ableto sample large volumes of state spa
e, whereas low temperature systems, whilst havingpre
ise sampling in a lo
al region of state spa
e, may be
ome trapped in lo
al energy minimaduring the times
ale of a typi
al 
omputer simulation. Parallel tempering a
hieves goodsampling by allowing the systems at di�erent temperatures to ex
hange their state. Thus,the in
lusion of higher temperature systems ensures that the lower temperature systems 
ana

ess a representative set of low-temperature regions of state spa
e.Simulation of (K + 1) repli
as, rather than one, requires on the order of (K + 1) timesmore 
omputational e�ort. This extra expense of PT is one of the reasons for the initially slowadoption of the method. Eventually, it be
ame 
lear that a PT simulation is more than (K +
1) times more e�
ient than a standard, single-temperature Monte- Carlo simulation. Thisin
reased e�
ien
y derives from allowing the lower temperature systems to sample regions ofstate spa
e that they would not have been able to a

ess, even if regular sampling had been
ondu
ted for a single-temperature simulation that was (K +1) times as long. It is also worthnoti
ing that PT 
an make e�
ient use of large CPU 
lusters, where di�erent repli
as 
an berun in parallel, unlike 
lassi
al MCMC sampling that are sequential methods. An additionalbene�t of the PT method is the generation of results for a range of temperatures, whi
h mayalso be of interest to the investigator. It is now widely appre
iated that PT is a useful andpowerful 
omputational method.More re
ently, some resear
hers in the statisti
al 
ommunity took attention on PT andmore generally on intera
ting Markov Chains. They propose a general theoreti
al frameworkand new algorithms in order to improve the ex
hange information step addressed above.Two main algorithms drawn our attention: the equi-energy sampler (EES) of [22℄ and thepopulation importan
e-resampling MCMC sampler (PIR) of [23℄, whi
h allows to go ba
k inthe history of the 
hain. More pre
isely, these two last algorithms are based on self intera
tingapproximations of non-linear Markov kernels, de�ned by Andrieu et al. [23℄. We now des
ribethese methods in the Bayesian inversion 
ontext.3.1 Des
ription of the algorithmsWe �rst re
all that our aim is to simulate realizations from the posterior distribution (1). Weassume that the posterior distribution π(X) = f(X|d) takes the form of a Gibbs distribution,that is:

π(X) = exp(−E(X)), (14)where E(X) is the energy of the system at the state X. We �rst de�ne the family {π(l), l =
0 . . . K} of distributions we want to simulate from, su
h that:

π(l)(x) ∝ e−El(x), (15)where El(x) = E(x)
Tl

, where Tl is the temperature at whi
h the system under study is 
onsid-ered. The Tl satisfy: T0 = 1 < T1 < . . . < TK < +∞, so that π(0) = π. These distributionsare thus a family of tempered versions of P(X|d). To go ba
k to the analogy with the met-allurgy, these distributions represent the states of the metal at ea
h 
onsidered temperature.At high temperatures, the system 
an a

ess to high energy states, whereas at low ones, itwill attain lower energy, i.e. more stable states. We will also talk of tempered energies to
8



denote the El. The parallel algorithms aim to simulate from:
Π(x) =

K
∏

l=0

π(l)(x), (16)whilst allowing ex
hanges between states at di�erent temperatures. Flattened versions of π(0):
π(1), . . . , π(K) are easier to simulate. Thus they 
an provide information on π(0). Parti
ularly,the system at T0 
an exhibit a wide range of dis
onne
ted meta-stable states (i.e. the di�erentmodes of the posterior) and typi
ally, a single Markov 
hain is not able to visit all of themin the time of the simulation. So, ex
hanging with states generated at higher temperatureallows to explore better the support of the posterior.Di�erent strategies 
an be adopted to ex
hange information between 
hains at adja
enttemperatures. For l = 0, . . . ,K − 1, we de�ne the importan
e fun
tion:

r(l)(x) = e−(El(x)−El+1(x)), (17)whi
h is the un-normalized ratio of the distributions π(l) and π(l+1) at a given state x.From now on, we denote by x = (x(0), . . . , x(K)) ∈ XK+1 the 
urrent state of the Markov 
hainthat aims at simulating from Π, de�ned in (16). The method 
an be formalized by de�ningthe following kernel Pn at time n, given all the previous states x0:n−1 = (x0, . . . , xn−1) andfor A0 × . . . × AK ∈ B(XK+1):
Pn(x0:n−1;A0 × . . . × AK) = P (K)(x(K), AK)

K−1
∏

l=0

P
(l)

x
(l+1)
0:n−1

(x(l), Al), (18)where we simulate from π(K), the 
hain at the highest temperature TK , using the 
lassi
al MHkernel P (K)(·, ·), whereas at the other temperatures, for x
(l+1)
0:n−1 ∈ X n, x(l) ∈ X and A ∈ B(X ),we will use the heterogeneous Markov kernel:

P
(l)

x
(l+1)
0:n−1

(x(l);A) = θP (l)(x(l), A) + (1 − θ)

∫

X
ν

(l)

x
(l+1)
0:n−1

(x(l), dy)T (l)(y, x(l);A), (19)where,
ν

(l)

x
(l+1)
0:n−1

(x(l), dy) =

∑n−1
i=0 ω

(l)
n,i(x

(l), x
(l+1)
i )δ

x
(l+1)
i

(dy)

∑n−1
i=0 ω

(l)
n,i(x

(l), x
(l+1)
i )

(20)and in the three algorithms 
onsidered here T (l) will take the following form:
T (l)(y, x(l);A) = min

{

1,
r(l)(y)

r(l)(x(l))

}

1A(y) +

(

1 − min

{

1,
r(l)(y)

r(l)(x(l))

})

1A(x(l)). (21)In other words, equation (19) states that at time step n, temperature Tl, with probability θ,a 
lassi
al MHmove will be performed a

ording to the Markov kernel P (l)(x(l), A). Otherwise,with probability (1-θ), an ex
hange move will be proposed. It 
onsists in 
hoosing a state yamong x
(l+1)
0:n−1, the past states of the 
hain at temperature Tl+1, from the empiri
al distribution

ν
(l)

x
(l+1)
0:n−1

(20). This move is then a

epted or reje
ted a

ording to T (l) (21). Pre
isely, goingba
k to (17), it is a

epted with probability:
min

{

1,
r(l)(y)

r(l)(x(l))

}

= min

{

1, exp

((

1

Tl
− 1

Tl+1

)

(

E(x(l)) − E(y)
)

)}

,9



that is, if the energy of the proposed state y is lower than that of x(l), the ex
hange will besystemati
ally a

epted.The empiri
al distribution ν
(l)

x
(l+1)
0:n−1


an be viewed as an importan
e sampling estimate of
π(l) with the instrumental law π(l+1) 
onstru
ted from the past states x

(l+1)
0:n−1 of the 
hain attemperature Tl+1. Then, an ex
hange amounts to simulate dire
tly from an approximate formof π(l). Note that this will regenerate the 
hain and hen
e redu
e the auto
orrelation alongtime.The three algorithms (PT, EES, PIR), 
onsidered in this arti
le 
an be written in thisframework, and di�er only in the formulation of the weights ω

(l)
n,i. For some (y, z) ∈ X 2, wehave:1. for the PT algorithm:

ω
(l)
n,i(y, z) = 1i=n−1,it is only possible to go to the 
urrent state of the 
hain at the adja
ent higher temper-ature,2. for the EES algorithm, given a sequen
e of energy levels E0 < E1 < . . . < EK < EK+1 =

∞ de�ning a partition: X =
⋃K

l=0 Xl of energy rings: Xl = {x ∈ X : El < E(x) < El+1}and the fun
tion I(x) = l if x ∈ Xl, then the ωn,i take the form:
ω

(l)
n,i(y, z) = 1XI(y)

(z),that is, the new state of the 
hain at temperature Tl will be taken uniformly among thestates x
(l+1)
0:n−1 of the 
hain at temperature Tl+1 that are in the same energy ring as the
urrent state,3. for the PIR algorithm, the weights ωn,i take the following form:

ω
(l)
n,i(y, z) = r(l)(z),i.e. we obtain the new state by resampling from x

(l+1)
0:n−1 with the weights ω.The main idea behind the last two algorithms is that the kernel de�ned in (19) will 
onvergetowards the following limiting kernel:

P
(l)

x
(l+1)
0:n−1

(x(l);A) = θP (l)(x(l), A) + (1 − θ)R(l)(x(l), A), (22)where R(l) is a MH kernel, whose proposal distribution is given by:
• Q

(l)
EES(x, dy) ∝ π(l+1)(y)1XI(x)

(y)λ(dy) for the EES,
• Q

(l)
PIR(x, dy) = π(l)(dy) for the PIR algorithm.Obviously the 
onvergen
e towards R(l) will not be a
hieved in the time of the simulation,but its approximation at time n will help to sample from the posterior, parti
ularly to spana larger part of the state spa
e.Finally, it is worth noting that for all three algorithms, we 
an use the entire samplegenerated, reweighting the states a

ording to the temperature by the following importan
eweights:

η(l)(x) = e−(E0(x)−El(x)), (23)10



in order to 
ompute estimates of Ih = Eπ0 [h(X)], for some h. Hen
e, the estimate Îh, after
N iteration of the algorithm will take the form:

Îh =
K
∑

l=0

∑N
i=0 η(l)(x

(l)
i )h(x

(l)
i )

∑N
i=0 η(l)(x

(l)
i )

. (24)It has been shown numeri
ally in [22℄ that using the reweighted entire sample will providebetter estimates than using only x
(0)
0:N . Ergodi
 properties of the whole 
hain X ∈ XK+1 andasymptoti
 results (law of large number, 
entral limit theorem) regarding (24) follow dire
tlyfrom the properties of ea
h 
hain used (see [22℄ and [23℄).Con
erning the 
hoi
e of the parameters, some heuristi
 rules exist and are dis
ussed ine.g. [21℄ for the PT algorithm and in [22℄ for the EES. Unfortunately, this kind of informationdoes not exist yet in the literature for the PIR. The 
hoi
e depends mainly on the problemaddressed. We give below a few re
ipes to tune the parameters.3.2 Tuning the parametersAs the algorithms proposed here are fairly new, we think that some 
omments from ourexperien
e 
an be useful for future pra
titioners. These guidelines are purely empiri
al, basedon numeri
al experiments and our own re�e
tion. We will fo
us on four di�erent points forthe EES and the PIR algorithms:1. the kernel to 
hoose, as a fun
tion of the temperature,2. the sequen
e of temperature to 
hoose,3. the number of 
hains,4. the probability of proposing ex
hange between 
hains.As already 
laimed, the idea of applying these methods is to improve the mixing of the 
hain.Then we have to 
hoose kernels that will make e�e
tive this assumption. At the highesttemperature, large moves tend to be a

epted, even though the energy level rea
hed is notas low as the one �nally aimed. Thus, it is of great interest to use a fast mixing kernelthat 
annot be used at lower energy levels be
ause its transition would be reje
ted. Wethen re
ommend to use a "global" sampler like the independent sampler presented in se
tion2.2. However, the highest temperature has to be 
hosen so that the transition a

eptan
erate is high enough (see below). Conversely, at low temperatures, it is of interest to have akernel with good lo
al properties, like the Langevin sampler or a random walk with smallsteps, that will explore the posterior around the 
urrently identi�ed mode. The point is thento design the kernels between the highest and the lowest temperature levels. The di�
ultyis to 
hoose kernels that progressively worsen their global properties, while in
reasing lo
alproperties, when des
ending the temperature ladder. We mean progressively in the sense thatthe ex
hange proposal a

eptation rate has to stay at a satisfa
tory level between ea
h 
hain.In this regard, the kernels proposed in [24℄ should be useful. In high-dimensional problems, thenumber of 
omponents a�e
ted at ea
h transition should vary a

ording to the temperature,modifying more 
omponents at high levels than at lower ones, see the appli
ation in se
tion4. The sequen
e of temperatures has to be 
hosen so as to obtain a satisfa
tory ex
hangea

eptation rate. In the literature about PT (e.g [20℄, [21℄), most authors propose to distributethe temperature geometri
ally. In our appli
ations, we followed this advi
e and it appeared to11



work well. The problem is then to 
hoose the highest temperature TK and the number K, thelowest temperature being always 1. TK has to be 
hosen a

ording to the problem 
onsidered.Pra
ti
ally, a preliminary study of the energy has to be 
ondu
ted. This study 
onsists inthe 
omputation the energies for an i.i.d. sample (x1, . . . , xn) generated from the prior and
al
ulating its mean 1
n

∑n
i=1 E(xi). More pre
isely, assuming that the prior distribution on

X is given by g(X) and that the measurement error is Gaussian with identity 
ovarian
e, Fdenoting the forward model, the posterior will take the following form:
π(X) ∝ exp(−E(x)) = exp

(

−1

2
‖d − F (X)‖2 + log(g(X))

)

. (25)Considering that the realizations X from the posterior show no error, that is F (X) = d, the�rst term in the expression above vanishes and the energy of the system 
onditioned by dshould be around E[− log(g(X))], where E stands for the mathemati
al expe
tation, if theprior has been 
hosen 
orre
tly. The idea is then to 
hoose the highest temperature TK soas to have 1
nTK

∑n
i=1 E(xi) ≈ E[− log(g(X))]. Note that this rule works also when the mea-surement error is not Gaussian; it needs however to be 
entered. This 
hoi
e will ensure asatisfa
tory transition a

eptan
e rate when using the independent sampler a�e
ting all the
omponents at the highest level.These 
onsiderations about kernels and temperatures are 
losely related to the number

K of 
hains you use. Parti
ularly, it is important not to employ a too big number. Indeed,using more 
hains will slow the input of information from the highest temperature level to thelowest, the one of interest. Conversely, the number of 
hains has to be large enough to allowthem to ex
hange information at a good rate. The temperature ladder is then 
onstru
teddistributing the temperatures geometri
ally between TK and T0 = 1. If the number of 
hainsis su�
ient, it allows generally a good overlapping of the histograms of the tempered energies,indu
ing the o

urren
e of ex
hanges. The number of temperatures to use should then be theminimum number that ensures a good overlapping of the histograms of the tempered energies.Regarding the proposal rate of information ex
hange, there is again a balan
e to do be-tween high and low rates. A high rate will en
ourage information ex
hange, but will slowlo
al exploration. Conversely, a low rate will hamper the pro
ess of ex
hanging information.This depends highly on the dimension of the problem: lo
al exploration is obviously slowerin high dimensional spa
es. It should generally be between 0.05 and 0.3.As a 
on
lusion, we 
an say that on ea
h four points addressed here, there is a balan
eto make. The idea is to tune the di�erent parameters in order to allow e�
ient informationex
hange, while allowing good lo
al exploration at low temperatures and fast mixing at highones. It may depend strongly on the problem to solve. However, as explained above, a pre-liminary study of the energies of an i.i.d. sample generated from the posterior should allow totune satisfa
torily the parameters. Like MCMC methods, every applied use of these methodsrequires instin
t and understanding both about the underlying model and about the Markov
hains being used.3.3 PT, EES or PIR ?Among the three algorithms proposed here, we 
laim that the PIR outperforms the two othersfor Bayesian inversion problems. It is 
lear that the PT has weaker properties than the twoothers be
ause it does not a

ount for the history of the 
hains. Comparing the EES andthe PIR, we think the latter is the most suited for our problem. Indeed, 
onsidering that thelower is the temperature, the slower the 
hain will enter the stationary regime, we 
an remarkthat the PIR does not need the 
hains to be in stationary regime before to allow ex
hanges,12




ontrarily to the EES algorithm. Indeed, in the EES, the ex
hange proposal is made in thesame energy ring as the 
urrent state. Then, if the 
hain of interest (i.e. at T0) has not rea
hedthe stationary regime and is still at high energy levels, the ex
hange proposal will be in thesame energy ring as the 
urrent state. Therefore, it will not help to attain stationary regime.Conversely, the PIR proposes ex
hange proposals a

ording to an importan
e sampling step,
onstru
ted on the states generated at the higher adja
ent temperature. The proposals arethen more likely at low energy levels and helps the 
hain to enter faster the stationary regime.4 Appli
ation to reservoir engineering4.1 Introdu
tionIn oil industry and subsurfa
e hydrology, geostatisti
al models ([25℄) are often used to repre-sent the spatial distribution of di�erent lithofa
ies in the reservoir. Two main model familiesexist: multiple point ([26℄) and trun
ated Gaussian models ([27℄). We fo
us here on the latter.Conditioning the spatial distribution of di�erent lithofa
ies in the reservoir to produ
tiondata, su
h as 
umulative oil produ
tion, water 
ut, is a highly 
hallenging task in reservoirmodeling. It 
onsists in solving an ill-posed inverse problem: given a prior knowledge on therandom �eld governing the lithofa
ies spatial distribution in the reservoir, typi
ally a geo-statisti
al model, we aim at �nding multiple realizations of this model that will exhibit thesame dynami
al behaviour of the true reservoir. In other words, we want to sample fromthe posterior distribution de�ned in the Bayesian inversion framework. This will improve ourknowledge on the reservoir and indi
ate us what should be the best exploitation strategy,where to dig new wells, in fun
tion of all the information gathered. The dynami
al behaviourof a given realization is 
omputed by a �uid-�ow simulator F .4.2 The 
aseWe 
onsider a 
ase where the prior on the lithofa
ies distribution is a 2-dimensional thresh-olded Gaussian model (see e.g. [25℄), with the following 
hara
teristi
s:- its size is 2500 × 2500m2,- it is dis
retized on a regular grid of N = 50 × 50 blo
ks,- it is 10 m thi
k,- the underlying Gaussian random �eld X has an isotropi
 spheri
al 
ovarian
e stru
turewith a range equal to 600 m (a quarter the �eld edge size),- it is 
omposed of two lithofa
ies: A (50% with permeability 500md) and B (50% withpermeability 10md),- we put two wells in this �eld: an inje
tor at grid node (3, 3) and a produ
er at (48, 48),- the porosity is assumed 
onstant at 0.25.Pra
ti
ally, X is a Gaussian random �eld with mean zero and spheri
al 
ovarian
e:
Γ(u, v) = 1 − 3

‖u − v‖
2a

− ‖u − v‖3

2a3
1‖u−v‖<a,

13
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Figure 2: Water 
ut 
urvesof an i.i.d. sample and refer-en
e.whose range a is a quarter the edge of the �eld (see [25℄). The lithofa
ies �eld is 
onstru
tedthresholding X:
T (X) = 1X<0.When T (X) = 1, the 
orresponding 
ells will be fa
ies A, otherwise B, with its asso
iatedpermeability value.The �eld is assumed to be saturated in oil at time zero. The �uid �ow is simulated with3DSL 
© [28℄, a streamline �uid �ow simulator, during 5000 days with an inje
tion rate at

5000 m3/day and a pressure of 200 bars at the produ
er.Given a referen
e realization of the �eld X∗ and water 
ut D∗ 
omputed on 2000 days, weattempt to 
ondition the geostatisti
al model X to D∗ (the water 
ut being the proportion ofwater in the oil produ
ed at ea
h time step). A

ording to the methodology introdu
ed in [29℄,[7℄, and [30℄, we 
hoose to use a trun
ated Karhunen-Loève ([31℄) expansion with M = 100
omponents to represent the �eld. Hen
e, this approximation redu
es the dimension of theinferen
e problem from 2500 to 100, whereas the �uid �ow results remain slightly un
hanged.The posterior distribution takes the following form:
P (X(M)|D∗) ∝ e

 

− 1
2
‖D∗−F (X(M))‖2− 1

2
‖X(M)−µ‖2

Γ−1
(M)

!

, (26)where Γ(M) = Φ(M)ΛΦtr
(M),

Φ(M) is a L × M matrix whose 
olumn ve
tors are the φi(x),

Λ is a diagonal M × M matrix whose diagonal 
omponents are the λi,where φi(x) and λi are respe
tively the eigenfun
tions and eigenvalues of Γ(M). Here, D∗and F (X(M)) are both fun
tions of time. The 
ovarian
e of the measurement error on thewater 
ut is assumed to be the identity matrix. We represent the referen
e realization of the�eld 
onsidered here in �gure 1. We also represent in �gure 2 the referen
e water 
ut 
urvetogether with a sample of 
urves 
omputed for a sample of 200 independent realizations ofthe prior. This sample is used to tune the parameters of the algorithm as explained in se
tion3.2.4.3 Choi
e of the parameters of the PIR algorithmWe 
an see in �gure 1 that there is an important portion of highly permeable (500 md) fa
ies(in white) in the diagonal axis linking the two wells. Figure 2 shows its parti
ular water 
ut14



pro�le: after the early water breakthrough (time when the water 
ut be
omes stri
tly positive),the water 
ut in
reases very fast, then slows down. This pro�le is very di�erent from that ofthe 
urves of 200 independent realizations of X. Indeed, the minimum energy 
al
ulated forthis sample is about 3000, with an average around 20000, whereas we expe
t the energies tobe around 50 for the mat
hed sample (see se
tion 3.2). That proves how 
hallenging is ourproblem. In order to solve it, that is to sample from (26), we implement the PIR algorithmand a 
lassi
al 
omponent-wise independent MH algorithm, that we will 
all single 
hain(SC) algorithm. The 
hoi
e of the di�erent parameters, set after some experiments, of thePIR algorithm is inspired by pra
ti
al 
onsiderations given in se
tion 3.2.We use 5 di�erent temperatures, distributed geometri
ally between T0 = 1 and T4 = 400.A geometri
 distribution of the temperatures is then 
hosen between the two extremal ones.Namely, we take Tl = T0

(

T4
T0

)l/4 for l = 1, 2, 3. Hen
e, we use the the following temperatureladder:
T0 = 1.000 < T1 = 4.729 < T2 = 22.361 < T3 = 105.737 < T4 = 400.000.Thus, we simulate the 5 Markov 
hains (X(l)) at the temperature T l. At T0, T1, T2, we sim-ulate from a symmetri
 in
rements random walk MH algorithm with a step varian
e 0.15

√
Tl,a�e
ting respe
tively 5, 20 and 50 
omponents. At T3, we simulate from an independent sam-pler a�e
ting 80 
omponents. At T4, we simulate from a global independent sampler. In otherwords, proportionally to the temperature, we propose larger moves, using global samplers atthe two highest temperatures. Modifying less 
omponents at low temperature results in bettera

eptan
e rates in our high dimensional spa
e (M = 100) and allows lo
al exploration ofthe posterior. Moreover, the moves at the highest temperatures a�e
t more 
omponents, thusimprove the mixing of these 
hains and feed the 
hains (X(0)), (X(1)), (X(2)) with states,that they 
ould not have attained without the ex
hange steps. After a few experiments, weallowed the 
hains to ex
hange information a

ording to the PIR s
heme just after the �rstiteration with a probability of 0.05, to ensure lo
al exploration between ex
hange steps.4.4 ResultsWe ran both algorithm for 10000 iterations. The PIR algorithm took 50 hours to run on adesktop 
omputer with a single pro
essor AMD Opteron 146 2.0GHz and the SC algorithmtook about 10 hours. Note that having implemented the PIR algorithm on a parallel 
omputerar
hite
ture, it would have taken the same time as the SC.In �gures 3a and 3b, we represent respe
tively the energy of the states of the 5 
hains usedin the PIR algorithm, and the energy of the states generated by the single 
hain.Figure 3a shows the energy of the states of the 5 
hains, as a fun
tion of the number ofiterations. For the lower 
urve, 
orresponding to T0, we observe a stabilization after about

200 iterations, around levels of energy 
orresponding to the expe
ted order of magnitude ofthe posterior mean energy. Indeed, allowing ex
hanges sin
e the beginning of the 
hain a
-
elerates its 
onvergen
e. As all the other 
hains show a stabilized pro�le of energy after thisnumber of iterations, we 
onsider it as the end of the burn-in period, namely ea
h 
hain isassumed in stationary regime beyond this number of iterations. Moreover, we 
an see thatea
h 
ouple of 
hains at adja
ent temperatures show overlapping energy pro�les, allowing theex
hanges between the two 
hains. Indeed, the empiri
al ex
hange a

eptan
e rate has beenfound between 0.6 and 0.8 for ea
h 
ouple of adja
ent 
hains.Figure 3b shows that the SC algorithm exhibits a rather fast 
onvergen
e towards the sta-tionary regime, attaining energy levels around 50 in about 250 iterations. This amazingly fast
onvergen
e is probably due to the starting state generated. It has an energy below 1000,15
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b.Figure 3: Energy of the states, as a fun
tion of the number of iterations (a: 5 
hains by PIR;b: SC ).mu
h lower than those observed in our preliminary sample.Figures 4a and 4b, show some statisti
s 
omputed from the samples generated respe
tivelyby the PIR algorithm and by the SC algorithm, namely, the median and the 95% per
entile
on�den
e interval of the water 
ut 
urves generated together with the referen
e water 
ut.
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median of the sample
95% percentile confidence intervalb.Figure 4: Median, 95% per
entile 
on�den
e interval and referen
e water 
ut (a. PIR algo-rithm, b. SC).In �gure 4a, we 
an see that for the mat
hed period (up to 2000 days), the median of thesample water 
ut perfe
tly mat
hes the referen
e. Moreover, the 95% 
on�den
e interval isextremely thin around the referen
e water 
ut until 2000 days. Then it widens for the next3000 days. In addition, the referen
e water 
ut stays in the 95% 
on�den
e interval and isquite 
lose to the median. This validates our sample for predi
tion purposes.Conversely, in �gure 4b, although the referen
e water 
ut is also 
orre
tly mat
hed by thesample generated by the SC algorithm, its predi
tion abilities are rather weak with respe
t tothe PIR algorithm: the 
on�den
e interval generated is still thin beyond 2000 days and doesnot in
lude the referen
e water 
ut. This is due to the only lo
al exploration performed bythis algorithm.Figure 5 shows 7 realizations by the PIR and one by SC. First, the aspe
t of the realizationsis far smoother than the referen
e. This is due to the approximation by a trun
ated Karhunen-Loève expansion with only M = 100 
omponents. Se
ond, the realizations generated by PIR(a to g) are 
learly di�erent between ea
h other (we did not reprodu
e here the whole varietyof maps generated). This illustrates the good exploration of the posterior (26) 
arried outby the PIR, due to the improved mixing properties with respe
t to 
lassi
al single MCMC.Finally, all realizations generated by the SC are similar between ea
h other (�gure 5h). It16
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h.Figure 5: 7 realizations from the posterior generated by the PIR (a. to g.) and one generatedby the SC (h.).has only performed a lo
al exploration. Note that all the maps generated by both algorithmsreprodu
e a link of highly permeable fa
ies between the two wells.Besides, it is worth noting that the PIR exhibits a global empiri
al a

eptan
e rate ofabout 0.4, whereas the SC shows a empiri
al a

eptan
e rate around 0.1. In other words,
omparatively, we throw away twi
e more �uid-�ow simulations with the SC than with thePIR.To sum up the results on this syntheti
 test 
ase, the PIR has shown improved mixingproperties 
ompared with the SC. It has provided a sample with good predi
tive properties,representative of di�erent modes of the posterior.5 Con
lusionIn this work, we have �rst des
ribed the main prin
iples of 
lassi
al MCMC methods andrelated te
hniques simulated annealing and simulated tempering. We have then proposed aninnovative appli
ation of a re
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