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Abstract. In this paper, we propose a new diagnostic checking tool
for fuzzy rule-based modelling of time series. Through the study of the
residuals in the Lagrange Multiplier testing framework we devise a hy-
pothesis test which allows us to determine if the residual time series is
homoscedastic or not, that is, if it has the same variance throughout time.
This is another important step towards a statistically sound modelling
strategy for fuzzy rule-based models.

1 Introduction

In general, once a model is built and estimated, it has to be evaluated. This
is true in the Soft Computing framework as well as in the classical Statistics
approach. By evaluating a model we understand to find out if the model satisfies
a set of quality criteria that allow us to say if the interesting characteristics of
the system under study are actually being captured by it or not.

Notwithstanding, this set of evaluation criteria is heavily dependent on sev-
eral considerations: the final use that the model is built for, the inner character-
istics of the system that are to be captured and whether the emphasis is put on
the empirical behaviour of the model or if there are theoretical considerations
that are considered to be more important. This is evident when we consider the
evaluation means used in the Soft Computing field as opposed to those used in
the statistical approach to time series analysis.

In the usually engineering-oriented Soft Computing framework, there has
been an overwhelming preeminence of just one evaluation criterion, and this has
been the goodness of fit. Generally, evaluation of a model consists on computing
the prediction (or classification) error produced when it is faced with a previously
unseen problem of the same type of the one used to estimate it. This measure,
in its different flavours (mean squared error, mean average error and so on)
is affected by some inherent limitations: it is not very meaningful for a single
model unless compared against other models, and is usually range-dependent,
which makes it difficult to compare the same model applied to different problems
represented by data sets with different characteristics.

On the other hand, the evaluation in the statistical approach to time series
has usually more to do with obtaining an estimate of the probability that the
model is effectively capturing the interesting characteristics of the data set, and
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this is achieved through developing hypothesis tests, also known as misspecifi-
cation tests.

There is a basic assumption behind modelling: a part of the system under
study behaves according to a model but there is another part which cannot be
explained by it and is usually considered to be white noise. This is the main idea
encoded in the expression of the general model

yt = G(xt;ψ) + εt, (1)

and it is also behind some of the diagnostic checking procedures.
It is interesting to obtain a precise knowledge about the series of the residuals,

{εt}, by for example determining if its values are independent and normally
distributed. If the residuals were not independent, that would mean that the
model is failing to capture an important part of the behaviour of the series, and
hence it should be respecified. This can be done through the test presented in
[2].

Another desirable property that the model should satisfy refers to the vari-
ance of the series {εt}. If a model is properly capturing the inner behaviour of
the series, the residuals should have the same variance at any point of the series.
Failing to ensure this implies that the model’s precission depends on time, and
hence that there are parts of the state-space that are not properly modelled. This
will affect very negatively to the performance of the model. Thus this situation
should be properly detected so that convenient action for modelling is taken.

The current paper paper addresses the detection of this situation when fuzzy
rule-based systems are used to model time series. The chosen procedure is throug
the defition of a hypothesis test, which we describe and do a preliminary evalu-
ation.

2 Heteroskedasticity in Time Series Modeling

Ethymologically, heteroskedasticity means differing dispersion or variance. In
statistics, a time series is called heteroskedastic if it has different variances
throughout the time, and homoskedastic if it shows constant variance in the
observable period.

Suppose we have a time series {yt}
n
t=1 and a vector of time series (explanatory

variables) {xt}
n
t=1. When considering conditional expectations of yt given xt, the

time series {yt}
n
t=1 is said to be heteroscedastic if the conditional variance of yt

given xt changes with t. This is also referred as conditional heteroscedasticity to
emphasize the fact that it is the series of conditional variance that changes and
not the unconditional variance.

A graphical representation might help understand heteroskedasticity The left
part of figure 1, (which is adapted from [4]), depicts a classic picture of a ho-
moskedastic situation. We can see a regression line estimated via orthogonal least
squares in a simple, bivariate model. The vertical spread of the data around the
predicted line appears to be fairly constant as X changes. In contrast, the right
part of the figure shows a similar model with heteroskedasticity. The vertical
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Fig. 1. Example of homoskedastic series (left) and heteroskedastic series (right).

spread of the errors is large for small values of X and then gets smaller as X
rises. If the spread of the errors is not constant across the X values, heteroskedas-
ticity is present.

In the case of fuzzy rule-based models for time series analysis, we might be
interested in studying the heteroskedasticity of the residual series in the state-
space regions defined by the antecedent of the rules. If our model’s residual series
show smoothly changing variance between the rules, it is likely that some rules
are failing to capture the behaviour of the series in their state-space subset. This
represents an important source of diagnostic information about the goodness of
the model.

3 Fuzzy Rule-based Models for Time Series Analysis

When dealing with time series problems (and, in general, when dealing with
any problem for which precision is more important than interpretability), the
Takagi-Sugeno-Kang paradigm is preferred over other variants of FRBMs. When
applied to model or forecast a univariate time series {yt}, the rules of a TSK
FRBM are expressed as:

If yt−1 is A1 and yt−2 is A2 and . . . and yt−p is Ap

THEN yt = b0 + b1yt−1 + b2yt−2 + . . .+ bpyt−p. (2)

In this rule, all the variables yt−i are lagged values of the time series, {yt}.
Concerning the fuzzy reasoning mechanism for TSK rules, the firing strength

of the ith rule is obtained as the t-norm (usually, multiplication operator) of the
membership values of the premise part terms of the linguistic variables:

ωi(x) =

d
∏

j=1

µAi
j
(xj), (3)

where the shape of the membership function of the linguistic terms µAi
j

can be

chosen from a wide range of functions. One of the most common is the Gaussian
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bell, although it can also be a logistic function and even non-derivable functions
as a triangular or trapezoidal function.

The overall output is computed as a weighted average or weighted sum of
the rules output. In the case of the weighted sum, the output expression is:

yt = G (xt;ψ) + εt =

R
∑

i=1

ωi(xt) · bixt + εt, (4)

where G is the general nonlinear function with parameters ψ, R denotes the
number of fuzzy rules included in the system and εt is the series of the residuals
as mentioned in the Introduction. While many TSK FRBMs perform a weighted
average to compute the output, additive FRBMs are also a common choice. They
have been used in a large number of applications, for example [5–7, 13].

It has been proved [1] that this specification of the FRBM nests some mod-
els from the autoregressive regime switching family. More precisely, it is closely
related with the Threshold Autoregressive model (TAR) [12], the Smooth Transi-
tion Autoregressive model (STAR) [11], the Linear Local-Global Neural Network
(L2GNN) [10] and the Neuro-Coefficient STAR [9].

This relation has given place to an ongoing exchange of knowledge and meth-
ods from the statistical framework to the fuzzy rule-based modelling of time
series. For instance, a linearity test against FRBM has been developed [3], and
more contributions are yet to come.

In this paper we will consider two types of membership functions: sigmoid,
µS, and Gaussian, µG. The sigmoid function is the one used in [9], and although
it is not so common in the fuzzy literature, we will use it here as an immediate
result derived from the equivalences stated in [?]. As we know, it is defined as

µS(xt;ψ)) =
1

1 + exp (−γ(ωxt − c))
, (5)

where ψ = (γ,ω, c).
On the other hand, Gaussian function will also be used because it is the most

common membership function in fuzzy models. It is usually expressed as

µG(xt;ψ)) =
∏

i

exp

(

−
(xi − ci)

2

2σ2

)

(6)

but we will rewrite it as

µG(xt;ψ)) =
∏

i

exp
(

−γ(xi − ci)
2
)

, (7)

where ψ = (γ, c).

4 Test of homoscedasticity of the residuals of an FRBM

If an FRBM is properly identified and estimated, one might expect that the
residuals have a normal distribution, εt ∼ N(0, σ2). Moreover, it is expected that
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the residuals retain this distribution throughout time, that is, that the mean and
the variance of εt remain constant through the changes of regime resulting from
the prevalence of the different rules in different parts of the state-space.

It is hence interesting to develop a test which can determine if the variance
σ2 of the residual series changes when the model switches from one regime to
another or not. Assuming it does vary, we might note it as a time series σ2

t ,
whose specification would be:

σ2

t = σ2 +
r
∑

i=1

σ2

i µσ,i

(

xt;ψµσ,i

)

(8)

where µσ,i are sigmoid or Gaussian function satisfying the identifiability restric-
tions defined in [?]. This formulation allows the variance to change smoothly
between regimes.

Following [8], in order to avoid complicated restrictions over the parameters
to guarantee a positive variance, we rewrite equation (8) as

σ2

t = exp
(

Gσ

(

xt;ψσ,ψµσ,i

))

= exp

(

ς +
r
∑

i=1

ςiµσ,i

(

xt;ψµσ,i

)

)

, (9)

where ψσ = [ς, ς1, ..., ςr]
′ is a vector of real parameters.

To derive the test, let us consider r = 1. This is not a restrictive assumption
because the test statistic remains unchanged if r > 1. We rewrite model (9) as

σ2

t = exp (ς + ς1µσ (xt;ψµσ
)) , (10)

where µσ is defined as (5) or as (7), depending on the membership function used
by the model.

In both cases, sigmoid or Gaussian, the null hypothesis of homoscedasticity
of the residuals is H0 : γσ = 0. As usual, model (10) is only identified under
the alternative γσ 6= 0 and we expand the membership function into a first-
order Taylor expansion around γσ = 0. Replacing the function by its Taylor
approximation and ignoring the remainder, both the sigmoid and the Gaussian
case result in

σ2

t = exp

(

ρ+

q
∑

i=1

ρixi,t

)

, (11)

so the null hypothesis becomes H0 : ρ1 = ρ2 = ... = ρq = 0. Under H0, exp(ρ) =
σ2.

The local approximation to the normal log-likelihood function in a neigh-
bourhood of H0 for observation t is

lt = −
1

2
ln(2π) −

1

2

(

ρ+

q
∑

i=1

ρixi,t

)

−
ε2t

2 exp(ρ+
∑q

i=1
ρixi,t)

. (12)

In order to derive a LM type test, we need the partial derivatives of the
log-likelihood:

∂lt
∂ρ

= −
1

2
+

ε2t
2 exp(ρ+

∑q
i=1

ρixi,t)
, (13)
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∂lt
∂ρi

= −
xi

2
+

ε2txi

2 exp(ρ+
∑q

i=1
ρixi,t)

, (14)

and their consistent estimators under the null hypothesis:

∂l̂t
∂ρ

∣

∣

∣

∣

∣

H0

=
1

2

(

ε2t
σ̂2

− 1

)

, (15)

∂l̂t
∂ρi

∣

∣

∣

∣

∣

H0

=
xi,t

2

(

ε2t
σ̂2

− 1

)

, (16)

where σ̂2 = 1/T
∑T

t=1
ε̂2t . The LM statistic can then be written as

LM =
1

2

{

T
∑

t=!

(

ε2t
σ̂2

− 1

)

x̃t

}′{
T
∑

t=1

x̃tx̃
′

t

}−1{
T
∑

t=!

(

ε2t
σ̂2

− 1

)

x̃t

}

(17)

where x̃t = [1,xt]
′. For details, see [8].

The test can be carried out in stages as follows:

1. Estimate model (4) assuming homoscedasticity and compute the residuals ε̂t.

Orthogonalize the residuals by regressing them on ∇G(xt; ψ̂) and as before

compute the SSR0 = 1

T

∑T
t=1

(

ε̃2

t

σ̂2

ε̃t

− 1
)2

, where σ̂2 is the unconditional

variance of ε̃t.

2. Regress
(

ε̃2

t

σ̂2

ε̃t

− 1
)

on x̃t and compute the residual sum of squares SSR1 =

1

T

∑T
t=1

ν̃2
t .

3. Compute the χ2 statistic

LMσ
χ2 = T

SSR0 − SSR1

SSR0

or the F version of the test

LMσ
F =

(SSR0 − SSR1)

s

(

SSR1

(T − s− n)

)

−1

.

Where T is the number of observations. Under H0, LMσ
χ2 is asymptotically dis-

tributed as a χ2 with s degrees of freedom and LMσ
F has approximately an F

distribution with s and T − s− n degrees of freedom.

5 Empirical evaluation

In this work we have performed a preliminary assessment of the properties of
the test. In this line, we have considered three real-world time series, modeled
them with FRMBs and then proceeded to their analysis.
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sigmoid membership function Gaussian membership function

model #rules σεt AIC p-value σεt AIC p-value

A 2 0.191 -313 0.179 0.205 -307 0.645
B 2 0.097 -6590 0.000 0.098 -6570 0.000
C 11 0.122 -24357 0.234 0.120 -24516 0.566

Table 1. Results of misspecification tests for three models facing real world cases
(significance value: 0.95).

The considered cases are fully described in [1], and are a well known ecol-
ogy problem (the Lynx series), a planning/management problem and a botanic
problem.

The first series, commonly referred to as the Lynx series, is composed of
the annual records of lynx captures in a certain part of Canada during a period
spanning 113 years. It is a common benchmarking series used to test and compare
time series models, and here we have used its logarithmic transformation. An
FRBM with two rules (model A) was identified following the iterative procedure
proposed in [1], and it was later estimated using a Genetic Algorithm.

The second considered series comes from an emergency call center and is the
record of the number of calls received daily throughout four years. As the series
is non-stationary and shows a high variability, it was differenced after applying
a log-transformation. The identified FRBM (model B) was also composed of just
two fuzzy rules, which were also fine tuned through a Genetic Algorithm.

Finally, the third series was a daily aerobiological log obtained over sixteen
years in the city of Granada (Spain), containing daily counts of airborne olive
tree pollen grains. This series was previously studied in [?].

Table 1 shows some information about the application of the FRBM, both
in its sigmoid and Gaussian versions, to the three time series mentioned above.
More precisely, for each model, the table shows, the number of rules of the model,
the values for the variance of the residuals (σεt

) and the Akaike information crite-
rion (AIC), together with the p-value obtained with the test for homoscedasticity
of the residuals.

By studying the p-values shown in columns 5 and 8 we can see how the
null hypothesis of the test was rejected in all the six cases, which leads us to
conclude that the variance of the residuals remained constant through time in
every application.

As mentioned above, this is a necessary condition for considering that a model
is properly capturing the behaviour of a time series.

6 Conclusions and Final Remarks

In this paper, a new statistical tool to evaluate the residuals of a fuzzy rule-based
model has been presented. It consists of a test against homoskedasticity of the
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residuals, that is, a test that allow the user to determine if the variance of the
residual series remains constant through time. In other words, this test is able
to tell if a model’s errors are bigger in some parts of the state-space or not.

This represents a useful contribution and another step towards a statistically
sound framework for the use of fuzzy rule-based models.

Acknowledgements: This work has been partially funded by Spanish Ministe-
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14575 and CIT-460000-2009-46.
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