TIMES model for the Reunion Island: Addressing reliability of electricity supply

Mathilde Drouineau1 Nadia Maïzi1 Edi Assoumou1 Vincent Mazauric1,2

1Mines ParisTech, Center for Applied Mathematics (France)
2Schneider Electric, Corporate Research Division (France)

International Energy Workshop (Stockholm, June 21st to 23rd 2010)
Power sectors: a period of changes

1. **Numerous challenges:**
 - Constraints on carbon emission
 - Depletion of fossil fuels
 - Population densification
 - Forecast huge investments in power sectors
 - Liberalization of electricity markets

2. **The need to improve energy efficiency:**
 - Electricity efficiency is severely disadvantaged by the efficiency of the Carnot cycles

3. **Fossil fuels = 66% of the world net electricity production**

In this context, renewable and distributed energy sources are attractive alternatives for power generation.
Benefits

1. The overall efficiency improves:
 - Renewable energy sources decrease electrical losses at production level
 - Distributed generation decrease electrical losses at transmission and distribution levels

2. High shares of renewable and distributed energy sources are expected:
 - In centralized scheme, e.g. Desertec concept
 - In distributed architecture with smartgrids concept
Spread of renewable and distributed energy sources

Challenges

1. **Design of energy policies**
 - To promote renewable and distributed sources
 - Incentives’ system

2. **Major technological issues**
 - Intermittency
 - **Reliability of electricity supply**: the capability of the power system to withstand sudden disturbances
Why focusing on the Reunion Island?

1. Blessed with high renewable energy potentials
2. Small, weakly-meshed and isolated power system
3. Binding target in 2030: 100% renewable sources in power generation
Long-term planning tools: the MARKAL/TIMES models

- **Inputs:**
 - Exogeneous demand
 - Available technologies
 - Domestic resources
 - Energy prices

- **Outputs:**
 - Optimal technologies
 - Optimal timing of investments
 - Global cost
 - Emissions

- Technological models driven by energy demand
- Minimization of the global discounted cost of the energy system
The electricity sector in 2008

- **Electricity production:** 2 546 GWh

Installed capacities

- **Thermal units (76%):**
 - 476 MW
 - Fuels: coal, fuel oil, sugarcane bagasse

- **Hydroelectricity (20%):**
 - Dams: 109.4 MW
 - Run-of-the-river: 11.6 MW

- **Others (4%):**
 - Wind: 16.8 MW
 - Solar PV: 10 MW
 - Municipal Waste: 2 MW

- **Hydroelectricity:**
 - Dams: 109.4 MW
 - Run-of-the-river: 11.6 MW

- **Sugarcane bagasse:** 10.31%

- **Wind:** 0.53%

- **Solar:** 0.42%

- **Municipal waste:** 0.03%

- **Coal:** 50.55%

- **Hydroelectricity:** 13.30%

Source: BPPI - EDF SEI 2009
Existing power plants

Evolution of residual capacities

- Coal & Bagasse units
- Coal units
- Diesel (Port Est)
- Diesel
- Combustion turbines
- MSW - Landfill Gas
- Solar PV
- Wind
- Run-of-the-river
- Dams
General hypotheses

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Coal</td>
<td>$2008/t</td>
<td>41.22</td>
<td>120.59</td>
<td>91.05</td>
<td>104.16</td>
<td>107.12</td>
<td>109.4</td>
</tr>
<tr>
<td>Crude Oil</td>
<td>$2008/bbl</td>
<td>34.3</td>
<td>97.19</td>
<td>86.67</td>
<td>100.00</td>
<td>107.50</td>
<td>115.00</td>
</tr>
<tr>
<td>Heavy fuel oil</td>
<td>€2008/t</td>
<td>-</td>
<td>196</td>
<td>174</td>
<td>201</td>
<td>216</td>
<td>231</td>
</tr>
<tr>
<td>Distillate fuel oil</td>
<td>€2008/hl</td>
<td>-</td>
<td>47</td>
<td>42</td>
<td>48</td>
<td>51</td>
<td>55</td>
</tr>
</tbody>
</table>

Electricity:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth rate</td>
<td>%</td>
<td>3.4</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Consumption</td>
<td>GWh</td>
<td>2 546</td>
<td>3 110</td>
<td>3 500</td>
</tr>
<tr>
<td>Power</td>
<td>MW</td>
<td>408</td>
<td>520</td>
<td>595</td>
</tr>
</tbody>
</table>

Sources: International Energy Agency, Electricité de France

1 2008 real term prices
Renewable energy potentials

<table>
<thead>
<tr>
<th>Energy sources</th>
<th>Current levels</th>
<th>Potentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>260 GWh</td>
<td>400 GWh</td>
</tr>
<tr>
<td>Hydropower</td>
<td>121 MW (553 GWh)</td>
<td>177 MW until 2012, 268 MW afterwards</td>
</tr>
<tr>
<td>Wind</td>
<td>16,8 MW</td>
<td>50 MW</td>
</tr>
<tr>
<td>Solar PV</td>
<td>10 MW</td>
<td>160 MW</td>
</tr>
<tr>
<td>Ocean Thermal Energy Conversion</td>
<td>–</td>
<td>10 MW in 2020, 100 MW in 2030</td>
</tr>
<tr>
<td>Wave Energy</td>
<td>–</td>
<td>30 MW (by 2014)</td>
</tr>
<tr>
<td>Geothermy</td>
<td>–</td>
<td>30 MW</td>
</tr>
<tr>
<td>Storage Capacities</td>
<td>–</td>
<td>1 MW in 2009, 10 MW</td>
</tr>
</tbody>
</table>
Scenarios specification

- Potentials for renewable energy sources are set at their maximum values.
- Scenarios are built around 3 assumptions:
 - Fossil fuel imports: No limit, Limit on coal, Limit on all fossil fuels
 - Demand: Standard, Low
 - Sugarcane bagasse potential: Standard, High
Results: calibration for the year of reference (2008)

<table>
<thead>
<tr>
<th>Energy sources</th>
<th>Model (%)</th>
<th>EDF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>56.90</td>
<td>50.55</td>
</tr>
<tr>
<td>Fuel Oils (Distillate and Heavy)</td>
<td>9.06</td>
<td>13.30</td>
</tr>
<tr>
<td>Sugarcane bagasse</td>
<td>10.21</td>
<td>10.31</td>
</tr>
<tr>
<td>Hydroelectricity</td>
<td>21.71</td>
<td>24.86</td>
</tr>
<tr>
<td>Wind energy</td>
<td>1.19</td>
<td>0.53</td>
</tr>
<tr>
<td>Solar energy</td>
<td>0.41</td>
<td>0.42</td>
</tr>
<tr>
<td>Municipal waste</td>
<td>0.52</td>
<td>0.03</td>
</tr>
<tr>
<td>Production</td>
<td>2 547 GWh</td>
<td>2 546 GWh</td>
</tr>
</tbody>
</table>
Business as Usual

\[
\{ \text{Imports: No limit} / \text{Demand: Standard} / \text{Bagasse: Standard} \}
\]
Limits on coal imports

\[\{ \text{Imports: Limit on coal} / \text{Demand: Standard} / \text{Bagasse: Standard} \} \]
Limits on fossil fuel imports

\{\textbf{Imports:} Limit on fossil fuels / \textbf{Demand:} Standard / \textbf{Bagasse:} Standard\}
Lower demand

\{\textbf{Imports:} Limit on fossil fuels / \textbf{Demand:} Low / \textbf{Bagasse:} Standard\}
Higher sugarcane bagasse potential

Imports: Limit on fossil fuels / Demand: Low / Bagasse: High
Remembering the issues

Challenges with renewable and distributed energy sources

1. Design of energy policies
 - To promote renewable and distributed sources
 - Incentives’ system

2. Major technological issues
 - Intermittency
 - **Reliability of electricity supply**: the capability of the power system to withstand sudden disturbances
Economical plausibility

Design of the incentives’ system

Costs and levels of investments in the different scenarios:

<table>
<thead>
<tr>
<th>Limit on imports</th>
<th>No limit</th>
<th>On coal</th>
<th>On fuel oils</th>
<th>Demand</th>
<th>Standard</th>
<th>Low</th>
<th>Bagasse</th>
<th>Standard</th>
<th>High</th>
<th>Relative total costs1</th>
<th>Relative investment costs1</th>
<th>Demand satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>1.32</td>
<td>8.19</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>1.24</td>
<td>6.30</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>1.10</td>
<td>5.24</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>0.98</td>
<td></td>
<td>yes</td>
</tr>
</tbody>
</table>

What are the required level of subsidies to favour these investments?

1Deducing the salvage costs
Reliability of electricity supply

- It is the capability of a power system to handle load fluctuations
- It mainly relies on:
 - Voltage management, with the electromagnetic coupling energy
 - Frequency management, with the kinetic and spinning reserves
- With renewable and distributed energy sources:
 - Levels of reserves decrease
 - Production fluctuations are more frequent
- At which cost the proposed power systems can be operated reliably?
Conclusions

- Renewable energy sources may cover power generation in 2030
- The model can be further developed: loadcurve, bagasse industry, scenario prices, carbon constraints
- Good case study to address economical and technological issues in the TIMES models:
 - Incentives’ system
 - Reliability of electricity supply