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ABSTRACT:  After decades of developing efficient software, FORGE, for bulk metal forming simulation, its coupling 
with an optimization algorithm is considered in order to solve the actual engineering problem, the design problem, using 
the meta-model assisted evolution strategy proposed by Emmerich et al. The first application regards the shape 
optimization of a cylindrical preform to produce a crankshaft by closed die forging. It aims at minimizing the volume of 
the material while satisfying the filling of the dies. In the second application, the open die forging of an axisymmetric 
thick plate is considered. The objective is to optimize the initial geometry in order to minimize the material weight 
while overlapping a prescribed geometry at the end of forging. The third example regards a four-stepped wire drawing 
sequence. In order to prevent the formation of cracks, it is desired to minimize a damage criterion while keeping the 
targeted diameter of the final wire. The geometries of the four dies are optimized: reduction ratio, die angle and die 
length. The necessary calculations are run in parallel, by using both the parallel version of the software and by 
evaluating several designs at the same time. 
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1. INTRODUCTION  

During recent years, several optimization algorithms 
have been proposed for highly time consuming 
problems, as encountered in non-steady forming 
processes such as forging. Most of them are based on 
meta-modelling techniques, like response surfaces, 
moving least squares, meshless finite difference method 
or Kriging. In order to handle very general optimization 
problems, it was decided to select an efficient and robust 
algorithm, which requires that the meta-model 
continuously evolves during the optimization iterations. 
Consequently, the Meta-model Assisted Evolution 
Strategy (MAES) proposed by Emmerich et al. [1], 
which has shown its efficiency and robustness in several 
complex metal forming applications [2,3], was selected. 
This algorithm makes it easy to handle two levels of 
parallelization: the parallelization of the finite element 
software itself, which is here automatically managed by 
FORGE, and the parallelization of the optimization 
algorithm. As the exact number of function evaluations 
is a priori known for each algorithm iteration, they can 
easily be carried out in parallel. The combination of 

these two parallelization strategies allows to significantly 
reduce the computational cost on a cluster of several 
processors, and so tackling rather large and complex 
metal forming problems. In order to evaluate the 
robustness of the proposed strategy, a large range of bulk 
forming processes have been considered. Three among 
the most representative are presented here. 

2. MAES algorithm 

Meta-model Assisted Evolution Strategies (MAES) are 
regarded as quite robust algorithms with respect to local 
extrema. They make it possible to solve the most 
complex optimisation problems. Evolutionary algorithms 
(ES) typically consist of three operators: selection, 
recombination and mutation. They are similar to Genetic 
Algorithms (GA), with slight differences. Mutation is the 
main genetic operator while recombination is not 
systematically used. In general, ES can find a solution 
more rapidly, whereas GA would find a more global 
extremum. However, the costs of both ES and GA are 
usually quite high in terms of function evaluations. 
MAES proposed by Emmerich et al [1] combines an ES 
with Kriging meta-models to reduce the number of 



function evaluations. An overview of MAES is depicted 
in Figure 1. It starts by randomly choosing an initial 
population of two times the number of optimization 
parameters. The number of parents, λ, is also set to 2 
times the number of optimization parameters, while the 
number of children, µ, is set to 4 times λ. 

 

Figure 1: Overview of MAES (from [3]) 

After having run the F.E. simulations for the initial 
population, the λ best settings are selected, recombined 
and mutated to yield µ children. The results of the 
previously performed F.E. calculations are used to fit a 
Kriging meta-model, so instead of running the expensive 
F.E. calculations for the µ children, the results are first 
estimated. The objective function values f are not 

directly approximated by f� , but by f f∆−� � , where f∆ �  

is the Root Mean Square Error of the Kriging 

approximation. f f∆−� �  is the merit function; it 

represents an estimation of the lowest achievable value 
of f. Based on these predictions, only the best λ 
individuals are actually evaluated by running the F.E. 
simulations. In this way, the meta-modelling technique 
saves 80% of time-consuming F.E. calculations. The 
Kriging meta-model is then updated, and this procedure 
is repeated until the maximum number of F.E. 
simulations is reached; it is here set to 10 λ (20 times the 
number of optimization parameters). 

3. PARALLEL CALCULATIONS 

According to the problem size, each F.E. calculation can 
be run on a certain number of processors, NF.E. It is 
useless to appeal to too many processors because the 
parallel efficiency decreases after a certain number. On 
the other hand, it is quite efficient to benefit from the 
parallel structure of the ES, by running the λ F.E. 
simulations at the same time on different machines. 
Consequently, λ NF.E. processors can be used for the 
parallel calculations, with a very high efficiency. 

4. FORGING OF A CRANKSHAFT 

The first application regards the shape optimization of a 
cylindrical preform (see Figure 2) that is used to produce 
a crankshaft by closed die forging (see Figure 3). Two 
types of parameterizations are considered. The fist one is 
a straight cylinder, which is defined by its height and 
diameter, while the second one is more complex, 
consisting in a succession of different straight cylinders, 
and requires 5 parameters (see Figure 2)  

 

 

Figure 2: Initial billet parameterize with 2 (top) and 5 
(bottom) parameters, and forging dies. 

The design aims at minimizing the volume of the 
material while satisfying the filling of the dies. This 
constraint is handled by a penalty method. In the 2 
parameters case, the 40 F.E. calculations are run on 2 
processors, while in the 5 parameters case, the 100 
calculations are run on 20 processors: 2 processors for 
each 3D forging simulation, and 10 optimization 
simulations run in parallel. The results (see Figure 3) 
show that the optimization with 5 shape parameters 
makes it possible to reduce the material weight (5.6 kg) 
by almost 5%, with respect to the best shape obtained 
with the two shape parameters optimization (5.8 kg). 

 

Figure 3: Forge component at the end of the process – 
The isovalues of contact (all in blue) show that the 
material is perfectly in contact with the dies. 

5. FORGING OF A THICK PLATE 

In the second application, the open die forging of an 
axisymmetric thick plate is considered (see Figure 4). 
The objective is to optimize the initial geometry of the 
plate in order to minimize the material weight while 
overlapping a prescribed geometry at the end of forging 
(see Figure 5). 5 parameters are necessary to 
parameterize the preform. In this 2D case, a larger 
number of calculations is allowed. The 200 simulations 
are run in parallel on a 10 computers cluster. Figure 5 
shows the worst solution randomly found by the 
algorithm, and the best solution found after 175 
calculations. Notice how the gap between the shapes is 
reduced. 



 

Figure 4: Forging of a thick plate, with punch (top), plate 
(middle) and die (bottom) 
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Figure 5: Worst (top) and best (bottom) solutions 
proposed by the algorithm. 

6. FOUR-STEPPED WIRE DRAWING 
SEQUENCE 

The cold wire drawing process consists in reducing 
the wire section to reach specific final mechanical 
properties. In order to prevent the formation of cracks 

and bursts, it is desired to minimize a damage criterion, 
here the Latham & Cockcroft (L&C) one, while keeping 
the targeted diameter of the final wire: 

0
0

f

LC I p critD max( , )d LC
ε

σ ε= =∫  (1) 

 

Z 

X 

C 

 

Figure 6: Die geometry and corresponding optimization 
parameters. 

Table 1: Initial shape parameters for a four-stepped wire 
drawing without optimization 

Die
radius  
R (mm)

Section  
(mm²)

Reduction 
ratio

Land 
length 
L (mm)

Entrance 
1/2 Die 

angle αααα(°)

Value of 
L&C 

damage 
criterion

Die 1 8.9 249 12.23%
Die 2 7.9 196 21.21%
Die 3 6.9 150 23.71%
Die 4 5.9 109 26.89%
Die 1 2.88
Die 2 2.55
Die 3 2.24
Die 4 1.94
Die 1 11.72
Die 2 11.72
Die 3 11.72
Die 4 11.72

1.04

 
 

The shape parameters regard the geometries of the 
four dies: reduction ratio, ½ die angle α and die length L, 
as shown in Figure 6. The wire has an initial radius of 
9.5 mm. The axisymmetrical four-stepped wire drawing 
process is simulated by the Forge2007 software. A 
Tresca law models the friction between wire and die: 

0 with 0 02
3

c m , m .
στ = =  (2) 

A first simulation was run with random values of shape 
parameters to get a damage reference value (see Table 
1), which is equal to 1.04. For the optimization 
procedure, the shape parameters of the 4th die are kept 
constant, leaving 9 optimization parameters (pi): the 3 
shape parameters of the three first passes. Initial radii are 
given in Table 1. Only one explicit constraint has to be 
satisified, it regards the radii: 

4321 RRRR >>>  (3) 



Consequently, the bounds on the reduction ratios, ∆R, 
are turned into bounds on the radii: 
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A large interval of variability is chosen for the two 
others parameters, the bearing length and the α angle: 
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The proposed optimization procedure is run to minimize 
the damage criterion of equ. (1). 180 F.E. calculations 
are carried out. The 168th iteration provides the best set 
of parameters with a damage value of 0.51, which 
corresponds to the half of the initial value (Table 2) 

Table 2: Best set of parameters and corresponding 
optimal damage value 

Shape 
parameters

p i Die
Optimal 
radius 
(mm)

Optimal 
reduction 

ratio

Optimal 
land 

length 
(mm)

Optimal 
entrance 
1/2 die 

angle (°)

Optimal 
damage 

value

p1 1 8.13 26.76%

p2 2 7 25.87%

p3 3 6 26.53%

4 5.9 3.31%

p4 1 1.44

p5 2 2.97

p6 3 4.48

4 1.94

p7 1 5.92

p8 2 5.92

p9 3 5.92

4 11.72

Reduction 
ratio

0.51Land length

Entrance 
1/2 die 
angle 
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Figure 7: Evolution of the damage objective function 
during optimization 

Looking more precisely to the optimized parameters 
values, the results seem quite consistent with the usual 

expertise. Indeed, the algorithm converges toward 
constant reduction ratios, except in the last pass. This is 
explained by the fact that a higher value of the entrance 
½ die angle is imposed. Therefore, the optimizer needs 
to minimize the reduction ratio of this pass, in order to 
minimize the damage. It is noticed that the optimized 
values are often on the domain boundaries. This is the 
case for the entrance die angle, which is constant for the 
three passes and close to the lower bound (see equ. (6)). 
Figure 7 shows the evolution of the damage objective 
function during optimization. 100 iterations are required 
before making it possible to get a better value than the 
randomly found initial one. The obtaining of a 
significantly better solution requires a larger number of 
calculations, which seems to be well estimated by the 
maximum allowed number, 180, i.e. 20 times the number 
of optimization parameters. 
These results could be improved by releasing the 
parameters of the last pass, in order to have a complete 
11 parameters optimization (i.e. with only the final 
radius being kept fixed). A parametric study of friction 
could also be considered, as the best angle of 6° and the 
optimal bearing length result in an equilibrium between 
redundant work and contact length. 

7. CONCLUSIONS 

Optimization algorithms based on meta-modelling 
techniques can be applied to actual forging problems. 
The computational time is well handled by the 
parallelization of the evolutionary algorithm, in addition 
to the parallelization of the F.E. software itself. Complex 
design problems can be tackled, like the forging of a 
thick plate. With the proposed numerical parameters of 
the algorithms, the strategy also applies to rather large 
number of parameters. 
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