T. Baldinger, J. Moosbauer, and H. Sixta, Supermolecular structure of cellulosic materials by Fourier transform infrared spectroscopy (FT-IR), 2000.

Y. Cao and T. Huimin, Improvement of alkali solubility of cellulose with enzymatic treatment, Applied Microbiology and Biotechnology, vol.160, issue.2, pp.176-182, 2006.
DOI : 10.1007/s00253-005-0069-8

C. Cuissinat and P. Navard, Swelling and Dissolution of Cellulose Part 1: Free Floating Cotton and Wood Fibres in N-Methylmorpholine-N-oxide???Water Mixtures, Macromolecular Symposia, pp.1-18, 2006.
DOI : 10.1002/masy.200651201

URL : https://hal.archives-ouvertes.fr/hal-00530620

C. Cuissinat and P. Navard, Swelling and Dissolution of Cellulose Part II: Free Floating Cotton and Wood Fibres in NaOH???Water???Additives Systems, Macromolecular Symposia, pp.19-30, 2006.
DOI : 10.1002/masy.200651202

URL : https://hal.archives-ouvertes.fr/hal-00530634

T. Jones and T. A. , The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei, Science, vol.265, pp.524-528, 1994.

K. Fischer, W. Goldberg, and M. Wilke, Strahlvorbehandlung von zellstoff für die regeneratfaserherstellung, Lenzinger Berichte, vol.59, pp.32-39, 1985.

A. V. Gusakov, T. N. Salanovich, A. I. Antonov, B. B. Ustinov, O. N. Okunev et al., Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose, Biotechnology and Bioengineering, vol.56, issue.124, pp.1028-1038, 2007.
DOI : 10.1002/bit.21329

B. Henrissat, H. Driguez, C. Viet, and M. Schülein, Synergism of Cellulases from Trichoderma reesei in the Degradation of Cellulose, Bio/Technology, vol.26, issue.8, pp.722-726, 1985.
DOI : 10.1038/nbt0885-722

URL : https://hal.archives-ouvertes.fr/hal-00309711

E. H. Immergut, J. Schurz, and H. Mark, Viskositätzahl-molekulargewichts-beziehung für cellulose und untersuchungen von nitrocellulose in verschiedenen lösungmitteln, 1953.
DOI : 10.1007/bf00899186

A. Isogai and R. H. Atalla, Dissolution of cellulose in aqueous NaOH solutions, Cellulose, vol.5, issue.4, pp.309-319, 1998.
DOI : 10.1023/A:1009272632367

H. A. Krässig, Cellulose -Structure, Accessibility and Reactivity, Polymer Monographs, vol.11, 1993.

L. Moigne and N. , Swelling and dissolution mechanisms of cellulose fibres, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00353429

L. Moigne, N. Montes, E. Pannetier, C. Höfte, H. Navard et al., Gradient in Dissolution Capacity of Successively Deposited Cell Wall Layers in Cotton Fibres, Macromolecular Symposia, vol.210, issue.1, pp.65-71, 2008.
DOI : 10.1002/masy.200850207

URL : https://hal.archives-ouvertes.fr/hal-00509598

L. R. Lynd, P. J. Weimer, W. H. Van-zyl, and I. S. Pretorius, Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiology and Molecular Biology Reviews, vol.66, issue.3, pp.506-577, 2002.
DOI : 10.1128/MMBR.66.3.506-577.2002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC134660

S. D. Mansfield and R. Meder, Cellulose hydrolysis ? the role of monocomponent cellulases in crystalline cellulose degradation, Cellulose, vol.10, issue.2, pp.159-169, 2003.
DOI : 10.1023/A:1024022710366

M. L. Nelson and R. T. O-'connor, Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II, Journal of Applied Polymer Science, vol.8, issue.3, pp.1325-1341, 1964.
DOI : 10.1002/app.1964.070080323

L. Rahkamo, M. Siika-aho, M. Vehviläinen, M. Dolk, L. Viikari et al., Modification of hardwood dissolving pulp with purifiedTrichoderma reesei cellulases, Cellulose, vol.17, issue.1, pp.153-163, 1996.
DOI : 10.1007/BF02228798

L. P. Ramos, Z. Filho, A. Deschamps, F. C. Saddler, and J. N. , The effect of Trichoderma cellulases on the fine structure of a bleached softwood kraft pulp, Enzyme and Microbial Technology, vol.24, issue.7, pp.371-380, 1999.
DOI : 10.1016/S0141-0229(98)00157-4

L. Rosgaard, S. Pedersen, J. Langston, D. Akerhielm, J. R. Cherry et al., Evaluation of Minimal Trichoderma reesei Cellulase Mixtures on Differently Pretreated Barley Straw Substrates, Biotechnology Progress, vol.23, issue.6, pp.1270-1276, 2007.
DOI : 10.1021/bp070329p

J. Rouvinen, T. Bergfors, T. Teeri, J. K. Knowles, and T. A. Jones, Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei, Science, vol.249, issue.4967, pp.380-386, 1990.
DOI : 10.1126/science.2377893

C. Roy, T. Budtova, and P. Navard, Rheological Properties and Gelation of Aqueous Cellulose???NaOH Solutions, Biomacromolecules, vol.4, issue.2, pp.259-264, 2003.
DOI : 10.1021/bm020100s

URL : https://hal.archives-ouvertes.fr/hal-00533049

J. Sjöberg, Characterization of chemical pulp fiber surfaces with an emphasis on the hemicelluloses, Ph.D. dissertation, KTH Royal Institute of Technology, 2002.

J. Sjöberg, A. Potthast, T. Rosenau, P. Kosma, and H. Sixta, Cross-Sectional Analysis of the Polysaccharide Composition in Cellulosic Fiber Materials by Enzymatic Peeling/High-Performance Capillary Zone Electrophoresis, Biomacromolecules, vol.6, issue.6, pp.3146-3151, 2005.
DOI : 10.1021/bm050471j

P. Wormald, K. Wickholm, P. T. Larsson, and T. Iversen, Conversions between ordered and disordered cellulose. Effects of mechanical treatment followed by cyclic wetting and drying, Cellulose, vol.1, issue.1, pp.141-152, 1996.
DOI : 10.1007/BF02228797

Y. P. Zhang and L. R. Lynd, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems, Biotechnology and Bioengineering, vol.144, issue.93, pp.797-824, 2004.
DOI : 10.1002/bit.20282