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ABSTRACT 

In this paper, an Arbitrary Lagrangian Eul-

erian (ALE) formulation has been devel-

oped for 3D FEM simulations of quasi-

stationary metal forming processes (such 

as drawing, rolling, extrusion…). In such a 

formulation, the mesh is updated inde-

pendently from the material motion, allow-

ing the mesh to be continuously optimized. 

It is however difficult in 3D to relocate 

mesh nodes such that the movement of the 

material domain boundaries can be fol-

lowed. In general, it is achieved by setting 

the normal component of the mesh velocity 

equal to the normal component of the ma-

terial velocity for each boundary node. 

This initial choice was found unsatisfac-

tory for processes with dominant tangential 

velocity. For such cases, a new procedure 

has been implemented in the FORGE3® 

software [1]. The surface nodes are pro-

jected onto the intermediate surface com-

puted at the end of the Lagrangian virtual 

updating stage. Different strategies are de-

veloped to project the nodes, according to 

the topological entities they belong to (ver-

tices, edges, plane or curved surfaces). A 

comparison for wire and bar drawing proc-

esses is provided between a standard Up-

dated Lagrangian formulation [1] and the 

present ALE formulation, showing very 

similar results (geometry shape, drawing 

stress, strain rates …). 

 

 

1. INTRODUCTION 

The paper describes an ALE formulation, 

and particularly a mesh motion technique, 

developed in the context of stationary 

forming processes with dominant tangen-

tial velocity.  

Different formulations, Lagrangian or Eul-

erian, can be used for FEM simulation of 

metal forming processes. In an Updated 

Lagrangian (UL) formulation, the mesh 

velocity is set equal to the material veloc-

ity. Therefore by construction, the mesh 

movement follows the free surfaces. A 

drawback of UL is the absolute need for 

frequent remeshing to (i) remedy severe 

mesh distorsion, (ii) maintain mesh re-

finement in critical strain and stress areas 

[1]. Remeshing may be CPU-time consum-

ing and involves frequent more or less dif-

fusive variable remapping, resulting in 

precision loss [2]. Another characteristics 

of UL which becomes a drawback when 

dealing with stationary processes is that 

modelling of the process transients is nec-

essary. In Eulerian approaches, the mesh is 

fixed in space and the material flows 

through it [3]. It seems attractive for sta-

tionary processes: mesh quality and local, 

preset refinements are preserved, suppos-

edly providing more accurate results. Ob-

taining an accurate description of the free 

surface is however a critical issue in the 

Eulerian formulation. 

The ALE method tries to combine the ad-

vantages of both formulations. The mesh 

can be updated independently from the ma-

terial motion. In this way, grid distortion 

can be avoided, mesh adaptation can be 

introduced and free surfaces correctly de-

scribed. The steady state of a process can 

be directly computed, as well as the tran-

sient phases if needed. The ALE formula-



tion is so regarded as the most appropriate 

formulation for FEM simulations of sta-

tionary processes [4]. 

The ALE formulation developed in this 

paper is presented in Section 2. It is based 

on the work of S. Guerdoux, where more 

details can be found [5]. Section 3 details 

the efforts devoted to the computation of 

the mesh velocity, particularly for nodes of 

the material boundary. Finally, in Section 

4, a comparison of the UL and ALE formu-

lations is presented, on the examples of 

wire and square bar drawing processes. 

 

2. ALE FORMALISM 

A split ALE formulation is used and im-

plemented in the FORGE3® software. 

Each time step is subdivided into three 

stages [6, 7]. First, a purely lagrangian 

computation provides the material velocity 

field v. In the second stage, the mesh is 

regularised, which gives the mesh velocity 

field w. After mesh updating, the variables 

are remapped from the old mesh to the new 

mesh (third stage).  

The main difficulty of this approach is the 

mesh velocity computation [6].This is why 

this paper is focused on the second stage of 

the ALE method. Variable remapping is 

described elsewhere [5]. 

The second stage consists in relocating the 

nodes without changing the mesh topol-

ogy. This r-adaptation aims at keeping the 

element shape regular, while maintaining 

or producing adequate mesh refinement in 

critical areas. The main difficulty is to ac-

curately describe the evolution of the body 

surface [7]. The frontier of the mesh at 

t+∆t, noted δMt+∆t
, has to match the 

lagrangian updated frontier of the mesh M
t
. 

 

3. REZONING PHASE  

3.1 General formulation 

Rezoning aims at preserving a mesh of op-

timal quality. A weighted and iterative cen-

tering method is applied to compute the 

new node positions: 
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where: Γm – the set of elements containing 

the node m, xge – the barycenter of element 

e, 1it

eC −  - a weight factor, it – the iteration 

number considered. At boundary nodes, 

the barycenters of the facets containing the 

node m are considered, rather those of the 

elements. 

The weight factor is introduced to provide 

an adaptive mesh with controlled element 

size and quality. It is a combination of two 

factors: a geometrical form factor to pre-

serve the element quality and an adaptive 

factor to enforce a prescribed element size.  

1it

e a

1it

e f

1it

e C)(1CC −−− −+= αα   (2) 

with

[ ]
( )

3

opt
e

1it
e1it

e a

31it
e

1it
e

0
1it

e f

h

h
C

h

V
CC











=

=

−
−

−

+−
−

            (3) 

where: Ve - volume of element e, he- its av-

erage edge size, and α - a constant, be-
tween 0 and 1, depending on 1it

e fC − [5]. The 

computation of the optimal size opt

eh  of the 

element e is based on the Zienkiewicz-Zhu 

(Z²) error estimation [8, 9]. 

The mesh velocity wm is derived from 

Equation (1): 
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where: 0

mx  - the coordinates of the initial 

node position, ∆t – the time step.  

3.2 Surface nodes : first procedure 

At boundary nodes, a constraint has to be 

sastified by mesh velocity: the grid has to 

evolve along with the material boundaries 

of the domain. Hence, at each boundary 

node, the normal component of the mesh 

velocity is generally set equal to its mate-

rial counterpart [4]:  



t

ALEΩ m ∂∈∀  ( ) 0n.wv mm =−               (5) 

where: vm – material velocity at node m, n - 

either a consistent normal to the free 

surface of the workpiece, or the outward 

contact normal.  

Using this condition (5) to compute a 

drawing process with a dominant 

tangential material flow has been 

unsuccessful (figure 1). The free surface 

wrinkles, as the edges were not preserved, 

generating numerical mesh distortion.  

 

 
Figure 1. Test of the formulation using 

equation (5) for surface node movement, in 

round wire drawing: major surface oscilla-

tions are observed. 

Waviness first appeared at the entry and 

exit lines of the deformation zone. For a 

node located on one of these lines, the 

upstream facets are parallel to the drawing 

axis, whereas the downstream facets are 

parallel to the die cone: the consistent 

normal is therefore slightly oriented in the 

axial direction. Following equation (5) 

above, the high tangential material velocity 

leads to a rather large tangential mesh ve-

locity. The node moves significantly in the 

material flow direction, contrary to 

expectations. When modelling stationary 

processes with an ALE method, the mesh 

displacement in the material flow direction 

should be small or even null, whereas it is 

free in the other directions in order to 

respect the deformation of the surfaces. 

 

3.3 Surface nodes : second procedure 

A new procedure, namely a projection 

technique, is implemented to tackle bound-

ary preservation. In a first step, the 

lagrangian update of the surface at time 

t+∆t is locally computed (Figure 2). Then, 

the nodes positioned by the rezoning 

algorithm (see section 3.1), are projected 

onto this updated surface.  

A boundary node m can be located at a 

corner, on an edge or on a plane or curved 

surface. The status of m is determined by a 

simple local modal analysis of the normal 

vectors of the facets containing this node, 

performed at each time step [5]. Different 

projection strategies are applied according 

to these three categories.  

 

Plane or curved surfaces 

The updated lagrangian surface is built lo-

cally. Only the first neighbours of the stud-

ied node m are considered (patch 
t

ALEmP , 
Figure 2).  

Figure 2. Patch
t

ALEmP  of the faces of the 
ALE mesh containing node m. 

 
Figure 3. Lagrangian updating of the patch 

t

ALEmP . 

k 
m 

t

ALEmP  

v 

t

ALEmP   

 

m 

tt

LAGmP
∆+

  
m’ 

k 

at the beginning 

during the simulation 



The updated lagrangian positions of node 

m and its neighbours are computed using 

the material velocity (Figure 3): 
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where: 
tt

LAG,kx ∆+
 - lagrangian update of the 

first neighbour k of node m, t

ALE,kx  - its 

non-updated coordinates, 
t
kv  - material 

velocity of k at t. 

They form the virtual lagrangian update 
tt

LAGmP
∆+

 of 
t

ALEmP . 

The barycentered position of node m is 

projected onto the patch 
tt

LAGmP
∆+
 as the new 

position of node m on the ALE mesh (Fig-

ure 4). 

 
Figure 4. Projection of the centered posi-

tion of m onto the patch 
tt

LAGmP
∆+
. 

The mesh velocity is deducted from the 

position of the projected node: 
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where: it

px  - the coordinates of the node 

projection. 

 

Edges 

A node on an edge must stay on the edge 

after rezoning. Hence, it is projected onto 

the lagrangian update of the edge. This 

edge is locally described by node m and its 

upstream and downstream neighbours 

along the edge (Figure 5). After computing 

their lagrangian positions, noted k’i, two 

segments [m' k’i] are obtained. The 

centered position (provided by (1)) is 

projected on each segment. The closest 

projected point (Figure 6) is used to 

determine the new mesh velocity at node m 

according to Equation (7). 

 
Figure 5. Local virtual lagrangian updating 

of a node m located on the edge. 

 
Figure 6. Projection of the centered posi-

tion of node m on segments [m' k'i]. 

Corner 

For corner nodes, the mesh velocity is set 

equal to the material velocity. 

 

Specific boundary planes 

When modelling the steady state of a con-

tinuous process, a fixed area in space must 

be defined. This area is limited in the main 

flow direction by upstream and down-

stream extreme cross-sections, here called 

specific boundary planes. Nodes belonging 
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to these planes are not allowed to move 

outside the defined space. They are eule-

rian, with a null mesh velocity. Nodes lo-

cated at the edges and corners of the 

boundary planes are not exactly projected 

as described above. In fact, material keeps 

flowing outside these arbitrary planes, so 

that these mesh corners are not true mate-

rial corners. Therefore, the corner node 

belonging to such a boundary plane is pro-

jected like an edge node. Similarly, nodes 

on an edge of the boundary plane are han-

dled like nodes located on a surface.  

3.4 Sub-stepping 

The projection procedure is applied lo-

cally, on the patch made of the first 

neighbours. If the computational time step 

is too large, the projected node may be out-

side this patch. To overcome this limita-

tion, the time step is divided into several 

smaller sub-steps during rezoning. The size 

of the sub-step ALEt∆  is limited by the 

mimimum edge length of a mesh element 

lmin: 

max

min

ALE
v

l
t =∆          (8) 

where: vmax – maximum material velocity 

During these reduced time steps, the mate-

rial velocity is regarded as constant. There-

fore, it has to be transported during the 

various sub-steps. A simple inverse inter-

polation from one mesh to the other is lo-

cally used. 

 

4. TESTS AND RESULTS 

The new formulation is compared to a 

more standard Lagrangian formulation [1]. 

4.1 Model definition 

Comparisons have been carried out for two 

3D drawing processes: wire drawing and 

rectangular sectional drawing. In the first 

process, the wire of initial diameter 10 mm 

is drawn through a conical die of semi-

angle 7°, down to 8 mm diameter. In the 

second process, a 10-mm round bar is 

drawn into a rectangular section 6 x 8 

mm². In both cases, the reduction in area is 

around 35%.  

Other process conditions are identical in 

the two processes. An aluminium alloy, 

AA5083, is modelled as elastic-

viscoplastic (Table 1) with thermo-

mechanical coupling.  

Table 1: Material properties. 

consistency 445 Mpa 

strain rate 

sensitivity index 

0.016 

strain-hardening index 0.168 

young modulus 73 GPa 

ν 0.3 

Friction follows Coulomb's law (µ= 0,02). 
The dies are rigid and isothermal, de-

scribed by a surface mesh only. The draw-

ing velocity is 100 mm/s, prescribed at the 

nodes of the front side of the workpiece. 

Only one quarter of the process is mod-

elled due to symmetry. The unstructured 

workpiece mesh is composed of tetrahedral 

mini-elements [1].  

When modelling with the ALE formula-

tion, the steady state of the geometry is di-

rectly represented, with the conical transi-

tion between the preformed and the drawn 

wire (Figure 7a). On the contrary, UL 

starts from a cylindrical billet (Figure 7b) 

and is forced to model the transient stage 

until reaching the steady state.  

In ALE, the two boundary planes defined 

above are treated somewhat differently. At 

the rear side, the nodes are eulerian, i.e. no 

movement is allowed. At the front side, 

they are only fixed in the direction of the 

material flow. ALE simulations were car-

ried out with or without adaptivity. 

4.2 Results 

During the ALE computation with the sec-

ond formulation (paragraph 3.3), the do-

main geometry is well preserved. No sur-

face oscillations appear (Figure 7d), con-

trary to Figure 1 under the same condi-

tions.  



 
Figure 7. Wire drawing model at the be-

ginning (a,b) and end (c,d) of the UL simu-

lation (a,c) and the ALE simulation (b,d).  

With the rectangular section, the same sur-

face mesh quality is obtained (Figure 8b). 

 

Figure 8. Rectangular section drawing 

model (x = 6 mm, y = 8 mm) at the end of 

(a) the UL simulation and (b) the ALE 

simulation. 

As can be observed in the cross-sections of 

Figures 9 and 10, elements keep a better 

equiaxed shape with the ALE formulation, 

compared to UL. In the UL simulation and 

in the ALE simulation without adaptivity, 

the element size was equal to 0.75 mm. In 

the ALE simulation with adaptivity, a finer 

mesh was located in the critical deforma-

tion zone: element size of about 0.5 mm 

for wire drawing and element size of about 

0.3 mm for rectangular section drawing. 

Furthermore, the other regions in the wire 

drawing model were meshed with bigger 

elements (element size of 1 mm). 

(a) 

 
(b)     

 
(c) 

 
Figure 9. Mesh for the wire drawing at the 

end of (a) the UL simulation, (b) the ALE 

simulation without adaptivity and (c) with 

adaptivity. 

(a)

(b)

 
Figure 10. Mesh for the rectangular section 

drawing at the end of (a) the lagrangian 

simulation, (b) the ALE simulation with 

adaptivity. 

The adaptive ALE computation has a lo-

cally finer mesh, which could have resulted 

in a smaller time-step compared to UL. 

Sub-stepping during node rezoning, as ex-

plained in paragraph 3.4, allowed the same 

time-step to be used in all simulations: 

5*10
-3
 s for wire drawing and 10

-3
 s for 

rectangular section drawing. 

The UL simulation is carried out without 

remeshing. The computational time of the 

UL simulation and the computational time 

of the ALE simulation without adaptivity 

are similar for wire drawing. ALE simula-

tions with adaptivity require larger compu-

tational times because of higher numbers 

of elements in the deformation zone. 

Figures 11 and 12 show the distributions of 

drawing stresses at the end of simulations 

(corresponding to the steady-state). Very 

few differences can be noticed between the 

distributions provided by ALE simulations 

and those provided by UL simulations. Re-

garding wire drawing, a more compressive 

drawing stress is computed with the adap-
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tive ALE formulation in two regions: in the 

contact zone and at the drawn wire centre 

(Figure 11). At the entry zone of the rec-

tangular section drawing, the adaptive 

ALE computation gives a larger zone with 

high compressive drawing stresses (Figure 

12). 

(a) 

 
(b) 

 
 

 

 

Figure 11. Wire drawing process: distribu-

tion of drawing stress at the end of (a) the 

UL simulation and (b) the ALE simulation 

with adaptivity. 
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Figure 12. Rectangular section drawing 

process: distribution of drawing stresses at 

the end of (a) the UL simulation and (b) 

the ALE simulation. 

As can be observed in Figure 13, the dis-

tribution of strain rates is more precise 

with the adaptive ALE computation.  

 

 

 

(a)  

(b)  

 

 

 

Figure 13. Wire drawing process: equiva-

lent strain rate map at the end of (a) the UL 

simulation and (b) the ALE simulation. 

Compared to the UL formulation, the adap-

tive ALE formulation allows to automati-

cally getting finer elements in the critical 

deformation zone, leading to results of 

higher accuracy. Using an adaptive node 

rezoning, the mesh refinement is kept in 

this zone.  

5. CONCLUSION 

The proposed ALE formulation has been 

applied successfully to two drawing proc-

esses. The mesh is unstructured and com-

posed of tetrahedral elements. In this case, 

it is found that stationary processes with 

large tangential velocity require a more 

consistant rezoning method to respect ma-

terial boundaries. 

Boundary nodes are projected onto the up-

dated Lagrangian surface. Complex do-

main geometries, such as the rectangular 

rod with edges and corners, are well de-

scribed. Furthermore, good element shapes 

and initial refinements can be preserved 

during the entire simulation. 

The ALE method, coupled with adaptivity, 

automatically performs refinements in 

critical areas. It provides results of better 

quality than those obtained with the UL 

formulation. In spite of the finer mesh, in-

crement time does not need to be reduced, 

thanks to the use of sub-stepping during 

rezoning. 
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However, the computational times of ALE 

simulations with adaptivity are high. Con-

sidering an identical accuracy of results for 

the UL simulation, it can be expected that 

the adaptive ALE formulation provides 

better computational times. 
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