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INTRODUCTION 

To properly handle the contact conditions without introducing spurious numerical constraints, 

the master / slave approach is inescapable but it results into a non-symmetric formulation for 

non-coinciding meshes [1]. From a theoretical standpoint, this unsatisfactory treatment of the 

contact area results into a decrease of the convergence rate of the finite element method [2]. 

From a more practical standpoint, severe problems arise when the discretization of the master 

surface is much finer than the slave surface. In metal forming, the workpiece is always the slave 

while the tools are the masters. So aiming at accurate tool stress calculations require masters 

meshes that are locally much finer than the corresponding mesh on the slave-workpiece. With a 

standard formulation, parts of the tool contact surface may result to be numerically unloaded, so 

providing very inaccurate finite element solution where high accuracy is required. A symmetric 

formulation has been proposed in [3], but it introduces spurious constraints. In [1], an accurate 

calculation of the contact conditions between the contacting bodies in proposed, while in [2], a 

L
2
 enhanced projection of the displacement field on the contact surface is developed. Both 

algorithms are written in 2D for an integrated formulation. Their extension in 3D seems quite 

uneasy. We then proposed a quasi-symmetric formulation [4]. It can be compared to [3] but the 

contact Lagrange multipliers are not duplicated on both contact surfaces. It so allows avoiding 

introducing spurious constraints, while keeping a simple and almost symmetric formulation. The 

implementation is not too complex. It is carried out into the FORGE3® finite element software, 

where a nodal (node to facet) contact formulation is utilized and the contact conditions are 

handled by a penalty method. A series of patch tests that have been proposed in [1] and [2], 

allows evaluating the convergence rate of this formulation and its robustness. 

QUASI-SYMMETRIC FORMULATION 

Contact formulation 

When body B is in contact with body A, the contact conditions are written on the bodies 

interface AB∂Ω  as: 

on , ( ) ( ) 0BA

AB A B B A Bh u u u n δ∂Ω = − ⋅ − ≤  (1) 

where Au  and Bu  respectively are the displacements of A and B, 
BAδ  is the signed distance 

between B and A, and )( BA vh  is the gap function. Using an implicit Euler scheme for time 

discretization, displacements 
t tu +∆

 at time t t+ ∆  can be written as a function of the velocity 

field 
t tv +∆

 at time t t+ ∆ : 

t t t t t t tu x x v t+∆ +∆ +∆= − = ∆  (2) 

So, the unilateral contact equation (1) becomes:
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The following Lagragian is then introduced to handle the contact constraints: 
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( )
contact
B

B

B A B Bh v dsλ
∂Ω

Λ = ∫  (4) 

where 
Bλ  are the contact Lagrange multipliers on body B. 

contact

BΩ∂  is potential contact surface. 

AΛ  can be defined in a similar way. At the continuous level, these two Lagrangians are 

equivalent: BA Λ=Λ=Λ  

Quasi-symmetric formulation 

At a discrete level, when the finite element meshes of 
contact

AΩ∂  and 
contact

BΩ∂  do not coincide, 

this equality is not satisfied. Using both Lagrangians yields an over-constraint problem [1]. 

Using only BΛ  provides the standard master / slave formulation (5), which is not symmetric and 

which shortcomings have been emphasised in the introduction.  

/M S

BΛ = Λ  (5) 

Using a double pass algorithm, i.e. the mean of both Lagrangians (6), similarly provides an 

over-constraint problem [1] 

( )BA

SYM Λ+Λ=Λ
2

1
 (6) 

In order to avoid introducing unnecessary contact constraints, the Lagrange multipliers should 

belong to a variational space which is equivalent to the 
Bλ  one, as in the Mortar approach. On 

the other hand, in order to obtain a more symmetric formulation, both Lagrangian should be 

considered. Therefore, in the Quasi-Symmetric formulation, the Lagrange multipliers are defined 

only on 
contact

BΩ∂  as in (5), and a symmetric Lagrangian is written, as in (6), but here 
Aλ  is 

replaced by 
Bλ , the orthogonal projection of 

Bλ  onto AΩ∂ : 

( )AB

QS Λ+Λ=Λ
2

1
     where:      ∫

Ω∂
=Λ

contact
A

dsvh B

ABA λ)(  (7) 

Node to facet and Penalty framework 

This work is carried out in the FORGE3® software which uses a nodal (node to facet) contact 

formulation and where the contact inequations are handled by a penalty formulation. The Quasi-

Symmetric formulation is then derived in this more specific frame. After finite element 

discretization, these inequations are written as: 

3
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where 
k

Af  denotes the facet of AΩ∂  containing the orthogonal projection )(kAπ  of node k , 

k

Aζ  are the coordinates of this projection, 
A

lN  the linear interpolation functions, ilV  is the i
th 

component of the velocity field at node l . The Quasi-Symmetric Lagrangian (7) is then written: 
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In the nodal contact formulation, 

B

B B

k kS N ds

∂Ω
= ∫  is the surface of B∂Ω  that is associated to 

node k . With such discrete formulation, the main issue is to define 
Bλ , the orthogonal 

projection of 
Bλ  onto 

contact

AΩ∂ . Actually, 
Bλ  is only define at the nodes of 

contact

BΩ∂ . In order to 

evaluate it at any point of 
contact

BΩ∂ , the discrete values 
B

kλ  are extrapolated using the velocity 

finite element functions. Then, l
Bλ  is approximated by )(l

B
Bπλ , the value of 

Bλ  at )(lBπ . 
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Equation (9) is then written again as: 
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Equation (11) clearly shows that this formulation is actually a master/slave one, as Lagrange 

multipliers are only defined on BΩ∂ . On the other hand, the contact conditions are significantly 

different from the standard formulation. The part of equation (11) into brackets contains an 

averaged contribution of nodes of 
contact

BΩ∂  and of 
contact

AΩ∂ , providing its quasi-symmetric 

character. From the Quasi-Symmetric Lagrangian (11), it is easy to derive the corresponding 

penalty functional that is used in the penalty formulation: 
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where ρ is the penalty coefficient and [ ]
2

x x
x

+ +=  is the positive part of x . 

CONVERGENCE RATE OF THE QS FORMULATION 

The patch test utilized in [1] is considered to evaluate the stability of the formulation. Two cubes 

with specific meshes (see Figure 1) are upsetted by an imposed displacement of 1mm or an 

imposed pressure of σzz=65Mpa (see Figure 1). The material is either elastic (Emaster=3*10
4
 MPa 

and Eslave=1.3*10
4
 Mpa ; νmaster=νslave=0) or newtonian (viscoplastic with a linear coeffcient: 

Kmaster=Kslave=200 MPa). Figure 1 shows that, in the vertical direction of imposed stresses or 

imposed displacements, there is only one element in the mesh of both bodies. Consequently, 

the constant stress value is always properly imposed in the master side of the contact interface. 

       

Figure 1: Patch test with imposed pressure, master and slave interface meshes 
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The exact solution of this problem is a constant stress field in the z direction on both interfaces 

and particularly to the slave one. With coincident meshes the error (distance to the constant 

stress value) due to a finite element formulation is less then 10
-8

, so it can be neglected. The 

contact between the cubes is bilateral sticking. For the elastic cubes the reference solution is 

the analytical one. For the newtonian cases, a numerical reference solution is obtained with a 

single cube made of the reunion of the two cubes. 

Case 

number 

1. Elastic cubes 

Imposed pressure 

2. Elastic cubes 

Imposed displ. 

3. Newt. cubes 

Imposed pressure 

4. Newt. cubes 

Imposed displ. 

Contact  QS Std MS QS Std MS QS Std MS QS Std MS 

Error 3.6% 8.0% 4,8% 10.0% 5.3% 10.3% 7.2% 15.0% 

Max. error 8.3% 22.0% 10.9% 24.8% 12.6% 30.9% 17.9% 34.5% 

Tableau 1: Results of the patch test for the different material bahaviors, boundary conditions, 

and contact algorithms. 

A standard convergence test is conducted on a pseudo 2D (plane deformations) upsetting of 

two identical elastic cubes, using coincident and non-coincident meshes as shown in Figure 2. 

 

Figure 2: Convergence test: convergence rates of the different contact algorithms with 

coinciding and non coinciding meshes. 

Several other similar tests have been conducted. The quasi-symmetrical formulation (QSF) 

always provides better results than the standard master/slave one (MSF), with a slightly better 

convergence rate. Shortcomings of the MSF are circumvented with the QSF, so allowing 

handling contact and friction conditions when the slave surface is very coarse compared to the 

master surface. It is shown the QSF is almost symmetric, even when the discretizations of both 

contacting surfaces are quite different. 
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