A. Greeff, C. Louw, and H. Swart, The oxidation of industrial FeCrMo steel, Corrosion Science, vol.42, issue.10, pp.1725-1740, 2000.
DOI : 10.1016/S0010-938X(00)00026-3

M. Toloczko, M. Hamilton, and S. Maloy, High temperature tensile testing of modified 9Cr???1Mo after irradiation with high energy protons, Journal of Nuclear Materials, vol.318
DOI : 10.1016/S0022-3115(03)00023-0

V. Shankar, M. Valsan, B. Sankara-rao, K. Kannan, R. Mannan et al., Low cycle fatigue behavior and microstructural evolution of modified 9Cr???1Mo ferritic steel, Materials Science and Engineering: A, vol.437, issue.2, pp.413-422, 2006.
DOI : 10.1016/j.msea.2006.07.146

V. Sklenika, K. Kuchaová, M. Svoboda, L. Kloc, J. Bur?ík et al., Long-term creep behavior of 9???12%Cr power plant steels, Materials Characterization, vol.51, issue.1, pp.35-48, 2003.
DOI : 10.1016/j.matchar.2003.09.012

A. Armas, C. Petersen, R. Schmitt, and M. Avalos, Alvarez-Armas I. Mechanical and microstructural behaviour of isothermally and thermally fatigued ferritic/martensitic steels, J Nucl Mater, pp.307-311509, 2002.

P. Polcik, T. Sailer, W. Blum, S. Straub, J. Bur?ík et al., On the microstructural development of the tempered martensitic Cr-steel P 91 during long-term creep???a comparison of data, Materials Science and Engineering: A, vol.260, issue.1-2, pp.252-259, 1999.
DOI : 10.1016/S0921-5093(98)00887-9

J. Pe?ika, R. Ku?el, A. Dronhofer, and G. Eggeler, The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels, Acta Materialia, vol.51, issue.16, pp.4847-4862, 2003.
DOI : 10.1016/S1359-6454(03)00324-0

J. Dubey, H. Chilukuru, J. Chakravartty, M. Schwienheer, A. Scholz et al., Effects of cyclic deformation on subgrain evolution and creep in 9???12% Cr-steels, Materials Science and Engineering: A, vol.406, issue.1-2, pp.152-159, 2005.
DOI : 10.1016/j.msea.2005.06.029

P. Giroux, F. Dalle, M. Sauzay, J. Malaplate, B. Fournier et al., Mechanical and microstructural stability of P92 steel under uniaxial tension at high temperature [10] Cottrell AH. Dislocations and plastic flow in crystals, Mater Sci Eng A, in press Acta Metall, vol.9, pp.155-161, 1953.

B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, and M. Mottot, Analysis of the hysteresis loops of a martensitic steel, Materials Science and Engineering: A, vol.437, issue.2, pp.183-196, 2006.
DOI : 10.1016/j.msea.2006.08.086

URL : https://hal.archives-ouvertes.fr/hal-00144997

J. Lemaitre and J. Chaboche, Mechanics of solids materials, 1987.

G. Eggeler, N. Nilsvang, and B. Ilschner, Microstructural changes in a 12% chromium steel during creep, Steel Research, vol.5, issue.5, pp.97-103, 1987.
DOI : 10.1080/14786437708239755

M. Sauzay, J. Marder, A. Marder, A. Orlová, J. Bur?ík et al., Modelling of the evolution of micro-grain misorientations during creep of tempered martensite ferritic steels The morphology of iron-nickel massive martensite, Microstructural development during high temperature creep of 9%Cr steel, pp.74-801, 1969.

F. Abe, Evolution of microstructure and acceleration of creep rate in tempered martensitic 9Cr-W steels Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant, Mater Sci Eng A Acta Metall, vol.234, issue.236, pp.1045-104845, 1997.

G. Eggeler, The effect of long-term creep on particle coarsening in tempered martensite ferritic steels, Acta Metallurgica, vol.37, issue.12, pp.37-123225, 1989.
DOI : 10.1016/0001-6160(89)90194-6

J. Hald, Microstructure and long-term creep properties of 9???12% Cr steels, International Journal of Pressure Vessels and Piping, vol.85, issue.1-2, pp.30-37, 2008.
DOI : 10.1016/j.ijpvp.2007.06.010

H. Klaar, P. Schwaab, and W. Österle, Round robin investigation into the quantitative measurement of dislocation density in the electron microscope, Prakt Metallogr, vol.29, pp.3-25, 1992.

B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot et al., Creep???fatigue???oxidation interactions in a 9Cr???1Mo martensitic steel. Part I: Effect of tensile holding period on fatigue lifetime, International Journal of Fatigue, vol.30, issue.4, pp.649-662, 2008.
DOI : 10.1016/j.ijfatigue.2007.05.007

URL : https://hal.archives-ouvertes.fr/hal-00311857

B. Devincre, L. Kubin, and T. Hoc, Physical analyses of crystal plasticity by DD simulations, Scripta Materialia, vol.54, issue.5, pp.741-746, 2006.
DOI : 10.1016/j.scriptamat.2005.10.066

URL : https://hal.archives-ouvertes.fr/hal-00019068

C. Sommer, H. Mughrabi, D. Lochner, W. Read, and W. Shockley, Influence of temperature and carbon content on the cyclic deformation and fatigue behaviour of iron . Part I. Cyclic deformation and stress-behaviour Dislocation models of crystal grain boundaries, Acta Mater Phys Rev, vol.46526, pp.1527-153678, 1950.

D. Caillard, J. Martin, U. Essmann, and H. Mughrabi, Thermally activated mechanisms in crystal plasticity Pergamon Materials Series Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Philos Mag, vol.840, pp.731-756, 1979.

K. Tak, U. Schulz, and G. Eggeler, On the effect of micrograin crystallography on creep of FeCr alloys, Materials Science and Engineering: A, vol.510, issue.511, pp.510-511121, 2009.
DOI : 10.1016/j.msea.2008.11.070

J. Li, Petch relation and grain boundary sources, Trans Metall Soc AIME, vol.227, pp.239-247, 1963.

B. Fournier, S. Ahzi, and R. Kouddane, Fatigue-fluage des aciers martensitiques à 9-12%Cr : comportement et endommagement On the self-consistent modeling of elastic-plastic behavior of polycristal, Mech Mater, vol.26, pp.43-62, 1997.