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Gradient, Non-Gradient and Hybrid Algorithms for 
Optimizing 3D Forging Sequences with Uncertainties 

Lionel Fourment 

CEMEF, Ecole desMines cle Paris, BP 207, 06 904 Sophia Antipolis Ceclex, France 

Abstract. In the frame of computationally expensive 3D metal forming simulations, optimization algorithms are studied 
in order to find satisfactory solutions within less than 50 simulations and to handle complex optimizations problems with 
several extrema. Two types of algorithms are selected, which both utilize a meta-model to approximate the objective 
function and so reduce computational cost. This model either supports standard Evolutionary Algorithms, such as 
Genetic Algorithms, or is sequentially improved until finding a satisfactory and well approximated solution. The 
Meshless Finite Difference Method is the utilized meta-model, without (standard algorithm) or with (hybrid algorithm) 
the gradient information. This meta-model approach allows taking into account uncertainties on optimization parameters 
in an inexpensive way. The optimization procedure is modified accordingly. The proposed algorithms are first evaluated 
and compared on standard analytic functions, and then applied to a 3D forging benchmark, the shape optimization of 
preform tool in order to minimize the potential of fold formation. 

Keywords: Optimization Algorithm, Response Surface, Uncertainties, Design of Experiments, Evolutionary Algorithm, 
Sequential Approximation, Shape Optimization, Tool Design, Forging 

INTRODUCTION 

One of the key issues of optimization in the frame 
of metal forming is the computational time required 
for a single simulation. More particularly, in the case 
of 3D forging, the non-steady nature of the large 
deformation process requires numerous remeshings 
and results into computational times ranging from 
several hours on a single computer machine to 
several days on a parallel computer. Therefore, it is 
not conceivable to carry out optimization procedures 
that would require too many simulations, which we 
have limited here to 50. Under these circumstances, 
several authors have used gradient algorithms, and 
consequently turned toward the calculation of 
objective function gradients, either by the direct 
differentiation method [1-4] or by the adjoint state 
one [5, 6]. On top of the complexity of these 
calculations, which require differentiating the finite 
element code equations, gradient algorithms only 
converge toward local minima, which can be 
sometimes satisfactory, but not always, as for 
instance in [7]. 

A first stage of robustness of an optimization 
algorithm is its ability to find a "global" minimum, 
by making it possible to screen the full parameters 
space and to check whether a satisfactory solution is 

achievable. The computational cost of raw "global" 
algorithms, such as Genetic Algorithms (GA), is 
generally a curb on their use. It proves necessary to 
use surrogate models to calculate the objective 
function for a very large number of parameter values. 
These models are referred to as Response Surfaces or 
Meta-models according to the frame in which they 
have been developed. They are based on different 
interpolation methods, such as Polynomial (mainly 
used in the Response Surface approach), Kriging [8-
10] (mainly developed in a probabilistic context and 
then extended to deterministic data), Moving Least 
Square [11] (or Diffuse Element Method, which are 
derived from meshless interpolations), or else 
Meshless Finite Difference Method (MFDM) [12, 
13] which is used here. They are utilized according 
two main manners [9]. Firstly, the meta-model can 
be substituted to the exact evaluations of the 
objective function within costly global algorithms, 
such as Evolution Strategies [8] or Genetic 
Algorithms [12]. Secondly, the meta-model can be 
utilized to build successive sequential 
approximations of the objective function to better 
and better approximate the global minimum. In this 
case, the algorithm usually starts from an initial 
Design of Experiments (DOE) that allows building a 
first approximation of the meta-model. Then, 
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(a) 

FIGURE 1. Initial billet (a) and forged spindle (b) at the end of forging. Lap in the colored zone (c) with initial preform. 

mm 

FIGURE 2. Initial design of preforming tool, parameterization of axisymmetric tool with Bspline functions, resulting tool. 

additional points are introduced to improve the 
accuracy of the approximation, according to various 
strategies [9-11]. 

On the other hand, the second stage of robustness 
of an optimization algorithm results from taking into 
account the problem uncertainties, which may have a 
dramatic effect on the stability of the found solution. 

This paper presents the two described strategies, 
which have been developed in the convenient case 
where the meta-model is derived from the MFDM. It 
allows using both non gradient and gradient 
interpolations, in which case the method may be 
called "hybrid" as it combines the gradient effect 
with an evolutionary algorithm. Gradients are 
calculated in the finite element software FORGE3® 
by the adjoint state method as presented in [6]. This 
approach allows taking into account uncertainties on 
optimization parameters, so providing a more robust 
algorithm. These algorithms are finally applied to a 
benchmark forging problem, the two-stepped forging 
of a 3D spindle. 

BENCHMARK OPTIMIZATION 
PROBLEM 

The benchmark problem is a simple but 
representative two-stepped sequence for forging a 

spindle from a cylinder (see Figure 1). The 
preforming operation is axisymmetric. The second 
and finishing one is closed-die forging with flash. 
With the initial design of the preforming dies, a flat 
design (see Figure 2-a), the material folds over 
during the second operation, as shown in Figure 1-c. 
This surface defect can be quantified by an unusual 
increase of the equivalent strain rate e~ on the free 
surface with respect to a reference value Wref . So, the 

following objective function provides a measure of 
the fold appearance potential: 

C >=>end 1 C 

J<=o \8s2f J 
free aa', 

Y 
ds 

Jref ) 

dt(\) 

where p represent the optimization parameters, 

dn'/ree the free surface at time / , and a a function 

parameter that is taken equal to 10 in the present 
applications. In the initial flat dies configuration, 
f(p) = 10.49. The axisymmetric shape of the 

preforming tool is parameterized with a Bspline 
curve (see Figure 2) with 2 active parameters in the 
considered applications. The inevitable uncertainties 
on the parameter values should also be taken into 
account for such a problem. In fact, the objective 
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function can be very sensitive to small variations of 
the preform shapes, and the tool shapes cannot be 
exactly machined according to design 
recommendations. 

The computational cost for a single evaluation of 
the objective function is about 3 hours on a personal 
computer. The gradient of the objective function is 
calculated by differentiating the finite element 
software using the adjoint state method, as presented 
in [6]. 

M E T A - M O D E L 

A meta-model allows calculating the surrogate 
function values (and possibly its gradients) from the 
exact values known at certain points referred to as 
"master" points. The present approach utilizes the 
Meshless Finite Difference Method (MFDM) [13]. 

Meta-Model Using The Gradient 
Information 

For any point i of the parameter space, located at 

x,, the approximation ft of / (x,) is a function of 

fv=f(xv) and V / v = / ( x v ) values of all nv 

master points v, which is obtained by the 
minimization (3) of the residues (4) of the set of first 
order Taylor series expansions written at any xv: 

Vv = l ,« , f, = f + Vf(x.-x ) + 0 

/,' 

2)(2) 

(3) 

where: *Af)=Y ± ^ )J- (4) 

so: f, 
1 

v=\,n, X - x„ 

•s 
v=\,n, 

l-f.-vfM-x*) (5) 

Meta-Model Without Gradient 
Information 

When the gradient of (/v )v=1 is not known, the 

Taylor series expansion is written in the inverse way, 
at x,. for any xv master point: 

Vv = l,«v, X = ^ + V ^ ( x v - x , . ) + 0( |x v -x , . f ) (6) 

(ZM) = (ffif°(Z'vZ') (7) 

where: « 0 ( l W ^ + ^ - , ) - f j ^ 

v=l.n, 

ifi'^fi) is m e n solution of the linear system: 

A '(UU) (9) 

A can be inverted if there are sufficient and well 
localized master points v. In practice, there should 
be at least (<i + l) master points, where d is the 

dimension of the parameter space. Practically, it is 
interesting to notice that the resolution of (9) also 

provides a surrogate gradient value V/j at x,.. 

Approximation Error 

In both cases, the approximation error of ft by 

ft can be estimated by the following Aft value: 

M, Ilk "(f.) (10) 

Aft makes it possible to compute an 

approximation of a lower bound of / (* , - ) : ft- Aft. 

This value can be regarded as the best possible value 

of /(*,-) suggested by the meta-model. 

At the level of the entire parameter space Q, the 
approximation error E is written as: 

E = j(f(x)-f(x))2dx (11) 
a 

By substituting / ( x ) by the value given by (5), 

or resulting from (9), a first order approximation of 
E if written [14]: 

> x -x v 

E((xXun,) = \ ^ . -d* (12> 
v=\,n, 

£'l(xv)v=1 I is an a priori error estimation of any 

function interpolated by the meta-model defined by 
the master points (xv) = . 

Design Of Experiments (DOE) 

The minimization of EI (xv )v=1 I with respect to 

the nv master points (xv) provides the best 
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initial Design Of Experiments (DOE) for the 
considered meta-model, in a fully consistent manner: 

E((XV) , ) = MNE((xv') , ) (13) 

If there already exist nu master points (xu) , 

the a priori interpolation error EI (xu )u=1 n , (xv )v=1 I 

resulting from the addition of nv new master points 

(x„) , is given by: 

Z II ir2 V i 
x - x„ 

v=l,n, 

x - x„ 
T J x (14) 

•L > x - x + > a / , II «ll / i I 

The minimization of ill(x„) , ,(x„) , ) with 

respect to (xv)v=1 provides an optimal and 

consistent way to enrich the existing DOE, with as 
many master points as desired. 

OPTIMIZATION ALGORITHMS 

The meta-model can be utilized either to compute 
approximations of the objective function within a 
computationally expensive optimization algorithms, 
or to build new optimization algorithms based on the 
sequential improvement of the meta-model itself. 

Meta-Model Based Evolutionary 
Algorithms (MEA) 

The first approach is based on the utilization of 
Genetic Algorithms (GA) that are quite robust and 
efficient to find global minima. For each individual 
of the current population, the value of the objective 
function is approximated by the meta-model. At each 
new generation, the meta-model is enriched with nv 

new points (xv )v=1 in order to better adapt it to the 

current population /2gen. These new points are 

obtained by minimizing the a priori interpolation 

error Ea \(xu) ,(xv) ), where ( x j is 
ugen \ \ u /u=\,nu \ v/v=\,n.jiy \ u /u=\,nu 

the set of previously utilized master points: 

^„((x„)„,(xv)v)=X(^-^)2 d5) 
isQg€„ 

In the hybrid algorithm (MEA-H) [14], the 
quality of the meta-model is enhanced by using the 
gradient of the objective function, so that / is 

calculated by equation (5). In the applications, the 
Pikaia [15] GA is used with a population of 200 

individuals and a limitation to 10 generations. At 
each new generation, 5 new master points are added 
to the meta-model, so that 50 calculations are carried 
out in all. 

Sequential Approximation Algorithms 
(SAA) 

Rather than optimizing the meta-model only for 
the current population, the meta-model can be 
sequentially enriched over the full parameter space. 
The derived Sequential Approximation Algorithm 
(SAA) follows three steps. 

1) The initialization consists in the DOE, i.e. in 
finding the nv master points that minimize 

E\(x\ , ), then in evaluating (f„) , , and 
\ \ v / v = l , n , / ' ° \ J v /v=l,n, 

building the corresponding meta-model. 
2) The second step is a sequential improvement 

of the obtained meta-model. Two procedures are 
used to add one new point to the meta-model at each 
iteration: 

a) selection of the point that minimizes / - Af : 
it is regarded as the point that has the best 
potential to minimize / . 

b) if this point has already been selected in a 
previous iteration, the position of the new point is 
given by the DEO, i.e. by minimizing 

EUxu)u=in ,x\ with respect to xv - in practice, 

it is advisable to select xv points that satisfies 

fv-Afv<fmi„, where fmm is the calculated 

minimal value of / . 

3) The third step is an exploitation of the 
obtained meta-model. At each iteration, the objective 

function is evaluated at the point that minimizes / , 

and the meta-model is further enriched as in step 2). 
However, during this third step, the procedure b) is 
slightly modified in order to provide a zooming 
effect: the enrichment of the meta-model is limited to 
a particular zone of the parameter space, Q.zoom - the 
hyper-sphere centered in xmm (such that 

/(*min) = /,mn) w i t h S U C n a radiuS t h a t (d + l) 

master points are already included into it. 
In the applications, the non-gradient interpolation 

(9) is used for the standard approach (SAA), and the 
gradient interpolation (5) in the hybrid one (SAA-H). 
5 points are generated during the first step, 35 during 
the second one, and 10 during the last one, so 
providing a total of 50 functions evaluations. 
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Sequential Approximation Algorithms 
With Uncertainties (SAA-U) 

The use of a meta-model allows taking into 
account uncertainties on the optimization parameters 
without significant additional cost, which would not 
be the case if we were considering uncertainties on 
other variables such as material or friction data. 
These uncertainties are assumed to follow a uniform 
stochastic law of Ax range. They are taken into 

account by replacing f{x) by f(x) (16) at any 

stage of the optimization procedure, so that the 
sequential improvement of the meta-model goes 
together with an improvement of the factoring in 
uncertainties. 

Vxe/2, f(x)=MINf(x) 

with: °(x): |xe/2, Vi = l,d, 
xt e \xj -ll/bclLx; +||zbcin 

(16) 

(17) 

APPLICATIONS 

Table 1 presents the results obtained with 
different SAAs for different analytical function: 
camel-back, Rosenbrock, Rastrigin, Grienwanck, and 
a semi-analytical function - this is a meta-model 
constructed from a very large number of simulations 
of the benchmark problem. SAAO is a variant of 
SAA where the initial DEO is carried out 

sequentially, adding values one by one, instead of 
computing all values simultaneously through the 
resolution of a higher dimension problem. Table 1 
shows that the gradient algorithm SAAO-H allows 
improving SAAO, but not so significantly. A better 
initialization with a 5 points DOE, in SAA, provides 
better results, without the gradient information. For 
the camel-back function, which is characterized by 
two minima located in an area with very weak 
gradients, the introduction of uncertainties allows 
finding not only a more stable solution, as for the 
other functions, but also a better one. 

For the forging benchmark problem, the new 
MEA-H and SAA are compared to more standard 
methods: the BFGS algorithm, the SCPIP algorithm 
[16], the Meta-model based Evolution Strategy 
(MES) developed by Emmerich et al. [8] using 
Kriging interpolation and different algorithmic 
choices with respect to MEA. As shown in Table 2, 
the BFGS algorithm is quickly trapped into a local 
minimum, which prevent it from finding a solution 
without any folding defect. On the other hand, the 
SCIP algorithm succeeds to find a much better 
solution that does not exhibit any fold occurrence. 
MEA-H finds a more global and better solution. 
However, the non-gradient MES is able to find an 
even better one. SAA still provides a better solution, 
at a significantly different location. 

With the introduction of 1mm uncertainties on the 
shape parameters (that are ranging between -10mm 
and +20mm), SAA-U allows finding not only a more 
robust solution but also a globally better one. 

TABLE 1. Results of the various SAA strategies for some analytical and semi-analytical functions. 

SAAO-H 

Pi 
p2 

SAAO 

Pi 
p2 

SAA 

best at iter. 

pl 
p2 

SAA-U 

uncertainties 
best at iter. 

pl 
p2 

Exact /l,000iter. 

pl 
P2 

Camel-back 

-0.795 

0.172 
-0.862 

-0.847 

-0.088 
-0.607 

-0.951 

49 
0.120 

-0.610 

-1.0316 

0.3 

39 
0.088 

-0.710 

-1.0316 

-0,0898/0,0898 
0,7126/-0,7126 

Rosenbrock 

0.215 

0.897 
0.759 

0.643 

0.418 
0.129 

0.046 

47 
1.009 
1.040 

0.441 

0.2 

46 
0.379 
0.120 

0.000 

1.000 
1.000 

Rastrigin 

-199.960 

0.500 
0.499 

-199.980 

0.499 
0.500 

-199.890 

18 
0.498 
0.499 

-
-
-
-

-
-200.000 

0.500 
0.500 

Grienwank 

-3.996 

-0.057 
-0.038 

-2.773 

-6.724 
-0.517 

-4.000 

26 
0.002 
0.006 

-
-
-
-

-
-4.000 

0.000 
0.000 

Semi-

analytical 
4.233 

-6.667 
9.697 

4.622 

-1.724 
14.828 

4.228 

49 
-6.711 
9.722 

4.690 

0.5 

37 
-1.506 
15.588 

-
-

-
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TABLE 2. Results of the different tested algorithms for the benchmark spindle optimization problem. 
Algorithm 

BFGS 
SCPIP 
MES 

MEA-H 
SAA 

SAA-U 

Best Value 
10.200 
9.290 
8.140 
9.000 
8.091 
7.877 

best at iter. 
7 
8 
37 
20 
51 
48 

uncertainties 
-
-
-
-
-

1.0 

pl 
6.990 
1.030 
-7.870 
-5.650 
-9.676 
-8.294 

p2 

18.410 
0.470 

-10.000 
-7.520 
-9.527 
-8.094 

Fold 
still present 

removed 
removed 
removed 
removed 
removed 

CONCLUSIONS 

Algorithms based on meta-models show quite 
efficient to solve 3D complex forging optimization 
problems within a limited number of iterations. New 
SAA are quite efficient, and provide better results 
than the very robust MES that was regarded as a 
reference. Higher order approximations using the 
gradient information (SAA0-H) allows improving the 
algorithm efficiency, but not quite significantly, and 
a better initialization with a good DOE (SAA 
approach) shows more effective. Finally, taking into 
account uncertainties on shape parameters allows 
escaping some too narrow local minima and finding 
both a better and more robust solution. 
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