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Parameter estimation of a 3-level quantum system
with a single population measurement

Zaki Leghtas Mazyar Mirrahimi Pierre Rouchon

Abstract—An observer-based Hamiltonian identification al-
gorithm for quantum systems has been proposed in [2]. The
later paper provided a method to estimate the dipole moment
matrix of a quantum system requiring the measurement of
the populations on all states, which could be experimentally
difficult to achieve. We propose here an extension to a 3-level
quantum system, having access to the population of the ground
state only. By a more adapted choice of the control field, we will
show that a continuous measurement of this observable, alone,
is enough to identify the field coupling parameters (dipole
moment).

Keywords: Nonlinear systems, quantum systems, pa-
rameter estimation, nonlinear observers, averaging.

I. INTRODUCTION

For applications ranging from quantum computers to the
synthesis of new molecules, an accurate estimation of the
parameters involved in the dynamics of the quantum system
is fundamental. Various methods have been engineered
over the years like the maximum-likelihood methods [10],
[8], [11], the maximum-entropy methods [4] and minimum
Kullback entropy methods [13]. The optimal identification
techniques via least-square criterias [6], [5], [12] and the
map inversion techniques [14] are some other techniques
explored in this area. In [9], a state-observer is presented
for the state identification combined with a gradient method
on the dipole moment. This result was then improved in
[2] succeeding in simultaneously estimating the state of
the system and it’s dipole moment using observers. In [12]
a rigorous proof of the well-posedness of the problem is
proposed. All these results required the knowledge of the
populations on all energy levels. Experimentally, that is
extremely difficult to achieve. Since in quantum mechanics,
measuring an observable influences the system, the less
information we need, the less we disturb the system, and
the more likely our estimation is accurate. Our goal was to
improve the result given in [2] in order to estimate the dipole
moments of a quantum system measuring continuously the
population on the first state only. We focus here on 3-level
systems with a single population measure.
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In section II, we explain the 3-level system and set the
estimation problem attached to (1). In section III we present
a 2-step estimation procedure based on two nonlinear
asymptotic observers (3) and (4). Sections IV and V are
devoted to local convergence proofs.

II. THE 3-LEVEL SYSTEM

A. Model and problem setting
Denote by |k〉, k= 1,2,3 the 3 states of energies Ek such

that |E2−E1| #= |E3−E2|. Throughout the paper we use the
following notations for k, l = 1,2,3: σ lk = |l〉〈k| − |k〉 〈l|,
σ lk
x = |l〉 〈k|+ |k〉 〈l|, σ lk

z = |l〉 〈l| − |k〉 〈k| and Pk = |k〉 〈k|
(projector on |k〉). Assume that the dynamics is described
by the following Schrödinger equation:

d
dt

|Ψ〉 =
−ı
h̄

(H0 +A(t)H1) |Ψ〉 , y= 〈Ψ|P1|Ψ〉 ,

where |Ψ〉 is the wave-function, A(t) ∈ R the electromag-
netic field, H0 = ∑3

k=1EkPk the free Hamiltonian, H1 =
µ12σ12

x + µ23σ23
x the Hamiltonian matrix describing the

coupling with the electromagnetic field (dipole moment)
and y the measurement output. Assuming the energies Ek
known, the goal consists in estimating the real coupling
parameters µ12 and µ23 from the output y. We assume the
electromagnetic field resonant with transitions 1 − 2 and
2−3:

A(t) = u12Ā12 sin
(

E2 −E1
h̄

t
)

+u23Ā23 sin
(

E3 −E2
h̄

t
)

with small amplitude magnitudes Ā12 and Ā23 and nor-
malized slow modulations |u12|, |u23| ∈ [0,1]. We have
|Ā12µ12|, |Ā23µ23| & |E2 −E1|, |E3 −E2|. In the interaction
frame |Φ〉= e

ıH0
h̄ t |Ψ〉 and after neglecting highly oscillating

terms (rotating wave approximation) we get the following
model

d
dt

|Φ〉 =
(

u12Ω12σ12 +u23Ω23σ23) |Φ〉

where Ω12 = Ā12µ12
2h̄ and Ω23 = Ā23µ23

2h̄ are Rabi amplitudes
when (u12,u23) = (1,0) and (u12,u23) = (0,1).

In the sequel we will use the density operator ρ = |Φ〉〈Φ|
instead of the wave function |Φ〉. The estimation of the real
parameters µ12 and µ23 is then equivalent to estimation of
the two other real parameters Ω12 and Ω23 appearing in the
dynamics of the projector ρ

d
dt
ρ = u12Ω12

[

σ12
,ρ

]

+u23Ω23
[

σ23
,ρ

]

(1)
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via the output y = Tr(P1ρ) and using u12 and u23 as
excitation real inputs. Remember that σ12 and σ23 are anti-
symmetric and real matrices: if the entries of ρ are initially
real, they remain real; if ρ is initially a projector and thus
describes a pure quantum state, its remains a projector.
Since we are in the 3-level case, ρ can be seen as a point
on the two dimensional manifold RP

2, the projective space.

B. Identifiability
It is proved in [12] that it is possible to identify Ω12

and Ω23 by measuring all the populations, i.e., via the
measurement outputs (Tr(P1ρ) ,Tr(P2ρ)) (Tr(P3ρ) = 1−
Tr(P1ρ)−Tr(P2ρ)). With just y= Tr(P1ρ), we provide here
below arguments showing identifiability via adapted choices
for inputs u12 and u23. With u12 = 1 and u23 = 0 we recover
essentially a 2-level system with states |1〉 and |2〉 and we
can identify Ω12 from y following [2]. This corresponds to
the first step that is treated in theorem 1.

Assume now that Ω12 is known. Set u12 = 1 and u23 =
η cosθ with d

dt θ = Ω12 and η a small positive parameter.
With ξ = e−θσ12ρeθσ12 , the output map becomes

y(t) =
Tr((P1 +P2)ξ )+cos(2θ )Tr

(

σ12
z ξ

)

+ sin(2θ )Tr
(

σ12
x ξ

)

2
and ξ obeys to
d
dt
ξ = η cos2 θ Ω23[σ23

,ξ ]+η cosθ sinθ Ω23[σ23
,ξ ]

Since η & 1 we can average its dynamics:
d
dt
ξ =

ηΩ23
2

[σ23
,ξ ]. (2)

The average values of y(t)(1 + 2cos(2θ )) and y(t)(1 −
2cos(2θ )) are Tr(P1ξ ) and Tr(P2ξ ), respectively. Thus in
average all the populations are measured and according
to [12], Ω23 is identifiable. This second step is treated in
theorem 2.

III. ESTIMATION ALGORITHMS AND SIMULATIONS

As explained here above, we proceed in two step. In a
first step we set in (1), u12 = 1 and u23 = 0 and estimate
from the output y(t) the parameter Ω12 via the following
nonlinear dynamical system (an invariant nonlinear observer
inspired by [2], [1], [3]):

d
dt

ρ̂ = Ω̂12[σ12
, ρ̂]+ ...

...εΓ12(y(t)−Tr (P1ρ̂))(σ12
z ρ̂ + ρ̂σ12

z −2Tr
(

σ12
z ρ̂

)

ρ̂)

d
dt

Ω̂12 = ε2γ12Tr
(

σ12
z [σ12

, ρ̂]
)

(y(t)−Tr (P1ρ̂)) (3)

with Γ12,γ12 positive parameters of order 1 and ε a
small positive parameter. Local convergence is proved in
theorem 1. The dynamics (3) respect two important features:
if the entries ρ̂ are initially real, they remain real for t > 0; if
ρ̂ is initially a projector and thus describes a pure quantum
state, it remains a projector for t > 0.

Assuming Ω12 obtained via this first step, we take, as
explained in previous section, u12 = 1 with u23 = η cosθ

( ddt θ = Ω12 and η a small positive parameter) to estimate
Ω23 via a second nonlinear dynamical system
d
dt

ρ̂ = Ω12[σ12
, ρ̂ ]+η cosθ Ω̂23[σ23

, ρ̂]+ ...

...εηΓ23(y− ŷ)(1−2cos(2θ ))
(

Σ23
z ρ̂ + ρ̂Σ23

z −2Tr
(

Σ23
z ρ̂

)

ρ̂
)

d
dt

Ω̂23 = ε2ηγ23(y− ŷ)(1−2cos(2θ ))Tr
(

Σ23
z [Σ23

, ρ̂]
)

(4)

where Σ23 = U(t)σ23U†(t), Σ23
z = U(t)σ23

z U†(t) with
U(t) = exp(θ (t)σ12) and where Γ23 and γ23 are positive
parameters of order 1 and ε is a small positive parameter.
Local convergence is addressed in theorem 2.
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Fig. 1. Estimation of Ω12 in a first step (t ∈ [0,50]) via (3); estimation
of Ω23 in a second step (t > 50) via (4) (no modeling and measure errors,
Ωe

12 and Ωe
23 stand for Ω̂12 and Ω̂23).
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Fig. 2. Similar simulations to those of figure 1 but with 20% of Gaussian
additive noise on the output y(t) and 10% of Gaussian additive noise on
the inputs u12 and u23.

Let us look at some simulations (figures 1 and 2) with the
following numerical values: ρ(0) = ρ̂(0) = P1, Ω12 = 1.0,
Ω23 = 0.8, Ω̂12(0) = Ω12

1.5 , Ω̂23(0) = 1.5Ω23, ε = η = 1
3 ,



Γ12 = Γ23 = 4, γ12 = γ23 = 1. Convergence of Ω̂12 is
effective after t > 20 that corresponds to 1

ε Rabi periods
associated to transition 1−2 since 2π

εΩ12
≈ 18. Convergence

of Ω̂23 is achieved for t ∈ [50,200]. The interval length
corresponds to 1

εη Rabi periods associated to transition
2 − 3 for the average dynamics (2) since 4π

εηΩ23
≈ 140.

These convergence times are in good agreement with the
convergence times that can be obtained from the linearized
system (6) appearing during the proof of theorem 1. When
additive noises are introduced on the inputs and output,
the performance are not dramatically changed and the
convergence times are almost the same.

IV. ESTIMATION OF Ω12

Theorem 1: Take system (1) with inputs u12 = 1, u23 = 0
and consider the estimation of ρ and Ω12 via (3). Take
Γ12,γ12 > 0 and assume that ρ(0) and ρ̂(0) are real projec-
tors with Tr((P1 +P2)ρ(0)) ∈]0,1[. Then, for ε > 0 small
enough, exists σ > 0 such that, if 1 − Tr(ρ̂(0)ρ(0)) ≤
σ and |Ω̂12(0)−Ω12| ≤ σ , then limt )→+∞ ρ̂(t)− ρ(t) = 0
and limt )→+∞ Ω̂12(t) = Ω12. Moreover the convergence is
exponential.

Proof: Since ρ and ρ̂ remain real projectors for t > 0,
they can be seen as points on the two dimensional manifold
RP

2, a projective space. In particular (1) is a dynamical
system with only 2 degrees of freedom whereas the space
of 3 × 3 symmetric real matrices where the dynamics is
expressed is of dimension 9. We have try to use less
scalar variables but averaging computations performed here
below are then much more complicated. In fact calculations
based on 3×3 symmetric real matrices and thus with more
variables than necessary simplify notably the analysis.

Set d
dt θ =Ω12 and consider the unitary and real transfor-

mation (P3 = |3〉〈3|)

U(t) = exp(θσ12) = P3 + cosθ (P1 +P2)+ sinθσ12

and the attached change of frame ξ =U†ρU , ξ̂ =U†ρ̂U .
Since

U†P1U =
P1 +P2

2
+

cos(2θ )

2
σ12
z +

sin(2θ )

2
σ12
x

and
U†σ12

z U = cos(2θ )σ12
z + sin(2θ )σ12

x

system (3) reads
d
dt

ξ̂ = εΩ̃12[σ12
, ξ̂ ]+ ...

...εΓ12Tr
((

P1 +P2
2

+
cos(2θ )

2
σ12
z +

sin(2θ )

2
σ12
x

)

(ξ − ξ̂ )

)

...

...

((

cos(2θ )σ12
z + sin(2θ )σ12

x

)

ξ̂

+ ξ̂
(

cos(2θ )σ12
z + sin(2θ )σ12

x

)

−2Tr
((

cos(2θ )σ12
z + sin(2θ )σ12

x

)

ξ̂
)

ξ̂
)

d
dt

Ω̃12 = εγ12Tr
((

cos(2θ )σ12
z + sin(2θ )σ12

x

)

[σ12
, ξ̂ ]

)

...

...Tr
((

P1 +P2
2

+
cos(2θ )

2
σ12
z +

sin(2θ )

2
σ12
x

)

(ξ − ξ̂ )

)

with εΩ̃12 = Ω̂12−Ω12. Since d
dt ξ = 0, for ε small enough

we can consider the average system:

d
dt

ξ̂ = εΩ̃12[σ12
, ξ̂ ]+ ...

...ε
Γ12
4

Tr
(

σ12
z (ξ − ξ̂ )

)(

σ12
z ξ̂ + ξ̂ σ12

z −2Tr
(

σ12
z ξ̂

)

ξ̂
)

+ ...

...ε
Γ12
4

Tr
(

σ12
x (ξ − ξ̂ )

)(

σ12
x ξ̂ + ξ̂ σ12

x −2Tr
(

σ12
x ξ̂

)

ξ̂
)

d
dt

Ω̃12 = ε
γ12
4

Tr
(

σ12
z [σ12

, ξ̂ ]
)

Tr
(

σ12
z (ξ − ξ̂ )

)

+ ...

...ε
γ12
4

Tr
(

σ12
x [σ12

, ξ̂ ]
)

Tr
(

σ12
x (ξ − ξ̂ )

)

But ξ̂ = ξ and Ω̃12 = 0 is a steady state of this average
system. Assume we have proved that this equilibrium is
exponentially stable. Then the averaging theorem (see, e.g.
[7, theorem 4.1.1, page 168]) ensures that the above time-
periodic system admits a unique periodic orbit exponentially
stable near (ξ ,0). Since (ξ ,0) is also an equilibrium of
this time-periodic system, this exponentially stable orbit
coincides with this equilibrium and the theorem is proved.

Let us prove now that (ξ ,0) is a hyperbolically
stable equilibrium of the average system. We have
Tr

(

σ12
z [σ12, ξ̂ ]

)

= Tr
(

[σ12
z ,σ12]ξ̂

)

and [σ12
z ,σ12] =

−2σ12
x . Thus Tr

(

σ12
z [σ12, ξ̂ ]

)

= 2Tr
(

σ12
x ξ̂

)

. Similarly

Tr
(

σ12
x [σ12, ξ̂ ]

)

=−2Tr
(

σ12
z ξ̂

)

. Thus the average system
reads

d
dt

ξ̂ = εΩ̃12[σ12
, ξ̂ ]+ ...

...ε
Γ12
4

Tr
(

σ12
z (ξ − ξ̂ )

)(

σ12
z ξ̂ + ξ̂ σ12

z −2Tr
(

σ12
z ξ̂

)

ξ̂
)

+ ...

...ε
Γ12
4

Tr
(

σ12
x (ξ − ξ̂ )

)(

σ12
x ξ̂ + ξ̂ σ12

x −2Tr
(

σ12
x ξ̂

)

ξ̂
)

d
dt

Ω̃12 = ε
γ12
2

(

−Tr
(

σ12
z ξ̂

)

Tr
(

σ12
x (ξ − ξ̂ )

)

+ ...

... Tr
(

σ12
x ξ̂

)

Tr
(

σ12
z (ξ − ξ̂ )

))

(5)

Assumption Tr((P1 +P2)ρ(0)) > 0 implies that
Tr((P1 +P2)ξ ) > 0. We can choose the initial value of θ
such that Tr(P1ξ ) = Tr((P1 +P2)ξ ) > 0 and Tr(P2ξ ) = 0.
ξ and ξ̂ belong to RP

2 and around ξ the variables
x̂ = Tr

(

σ12
x ξ̂

)

and ẑ = Tr
(

P1ξ̂
)

form local coordinates
for ξ̂ : when ξ̂ = ξ , x̂ = 0 and ẑ = a with a ∈]0,1[. Some
standard computations yield to the following linearized
dynamics:

d
dt
x̃= −2εaΩ̃12 −

εaΓ12
2

x̃

d
dt
z̃= −

εa(1−a)Γ12
2

z̃

d
dt
Ω̃12 =

εaγ12
2

x̃ (6)

with x̃ = x̂ and z̃ = ẑ− a. This linearized system is expo-
nentially stable.



Remark 1: The stability of the above average system (5)
is more than local. It admits the following Lyapunov func-
tion:

4
γ12

(Ω̃12)
2 + Tr

(

σ12
x (ξ̂ − ξ )

)2
+ Tr

(

σ12
z (ξ̂ − ξ )

)2

Even if theorem 1 is a local stability result, the proposed
estimator (3) should have a large attraction region. This is
corroborated by simulations of figure 1.

V. ESTIMATION OF Ω23

Theorem 2: Take system (1) with inputs u12 = 1, u23 =
η cosθ where η is constant and d

dt θ = Ω12. Consider the
estimation of ρ and Ω23 via (4). Take Γ23 > 0 and γ23 > 0.
Assume ρ is a real projector with Tr((P1 +P2)ρ(0)) > 0.
Then for ε , η positive and small enough, exists σ > 0 such
that, if ρ̂(0) is a real projector such that 1−Tr(ρ̂(0)ρ(0))≤
σ and |Ω̂23(0)−Ω23| ≤σ , then limt )→+∞ ρ̂(t)−ρ(t) = 0 and
limt )→+∞ Ω̂23(t) = Ω23.

Proof: The unitary and real transformation U = eθσ12

reads P3 +cosθ (P1 +P2)+sinθ σ12. Consider the attached
change of frame ξ =U†ρU , ξ̂ =U†ρ̂U . Since U†σ23U =
cosθ σ23 − sinθ σ13, ξ obeys to

d
dt
ξ = η cos2 θ Ω23[σ23

,ξ ]−η cosθ sinθ Ω23[σ13
,ξ ]

and (4) becomes
d
dt

ξ̂ = η cos2 θ Ω̂23[σ23
, ξ̂ ]−η cosθ sinθ Ω̂23[σ13

, ξ̂ ]+ ...

...εηΓ23
1
2

Tr
((

I12 +cos(2θ )σ12
z + sin(2θ )σ12

x

)

(ξ − ξ̂ )
)

...

...(1−2cos(2θ ))(σ23
z ξ̂ + ξ̂ σ23

z −2Tr(σ23
z ξ̂ )ξ̂ )

d
dt

Ω̂23 = ε2ηγ23
1
2

Tr
((

I12 +cos(2θ )σ12
z + sin(2θ )σ12

x

)

(ξ − ξ̂ )
)

...

...(1−2cos(2θ ))Tr(σ23
z [σ23

, ξ̂ ])

In average,

Tr
(

(

I12 + cos(2θ )σ12
z + sin(2θ )σ12

x
)

(ξ − ξ̂ )
)

(1−2cos(2θ ))

is equal to Tr
(

P2(ξ − ξ̂ )
)

. After neglecting the highly
oscillating terms, we obtain:

d
dt

ξ = η
1
2
Ω23[σ23

,ξ ]

d
dt

ξ̂ = η
1
2
Ω̂23[σ23

, ξ̂ ]+ ...

...εηΓ23
1
2

Tr
(

P2(ξ − ξ̂ )
)

(σ23
z ξ̂ + ξ̂ σ23

z −2Tr
(

σ23
z ξ̂

)

ξ̂ )

d
dt

Ω̂23 = ε2ηγ23
1
2

Tr
(

P2(ξ − ξ̂ )
)

Tr
(

σ23
z [σ23

, ξ̂ ]
)

In the time scale ηt instead of t and up to a circular
permutation (2,3,1) to (1,2,3), we recover (3) of theo-
rem 1. We can always choose the initial value of θ such
Tr(P1ξ ) = Tr(P2ξ ) = Tr((P1+P2)ξ )

2 > 0. Thus assumptions of
theorem 1 are satisfied, in particular Tr((P2 +P3)ξ (0)) ∈
]0,1[. Consequently, for ε small enough, (ξ̂ ,Ω̂23) solution

of the above average system converges locally exponentially
towards (ξ ,Ω23). Since (ξ̂ ,Ω̂23) = (ξ ,Ω23) is also solution
of the original system (4), this implies that, for η small
enough, (ξ̂ ,Ω̂23) converges locally towards (ξ ,Ω23). This
convergence is exponential.

VI. CONCLUSION

For a 3-level system (1) with only a single population
measurement we have proposed an algorithm in two steps
for the estimation of Ω12 and Ω23. Simulations show
the robustness to additive noise of this algorithm relying
on nonlinear asymptotic observers preserving the usual
symmetries (change of frames). Theorems 1 and 2 ensure
the local and exponential convergence. We can imagine
switching periodically between estimation of Ω12 via (3)
and estimation of Ω23 via (4) in order to produce estimations
of Ω12 and Ω23 in real-time.
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