Flatness-based pre-compensation of laser diodes - Mines Paris Accéder directement au contenu
Communication Dans Un Congrès Année : 2008

Flatness-based pre-compensation of laser diodes

A. Abichou
  • Fonction : Auteur
  • PersonId : 856161
S. El Asmi
  • Fonction : Auteur
  • PersonId : 880211
Pierre Rouchon

Résumé

A physical nonlinear dynamical model of a laser diode is considered. We propose a feed-forward control scheme based on differential flatness for the design of input-current modulations to compensate diode distortions. The goal is to transform without distortion a radio-frequency current modulation into a light modulation leaving the laser-diode and entering an optic fiber. We prove that standard physical dynamical models based on electron and photons balance are flat systems when the current is considered as control input, the flat output being the photon number (proportional to the light power). We prove that input-current is an affine map of the flat output, its logarithm and their time-derivatives up to order two. When the flat output is an almost harmonic signal with slowly varying amplitude and phase, these derivatives admit precise analytic approximations. It is then possible to design simple analogue electronic circuits to approximate the nonlinear computations required by our flatness-based inversion scheme. Simulations with the parameters of a commercial diode illustrate the practical interest of this pre-compensation scheme and its robustness versus modelling and analogue implementation errors.
Fichier principal
Vignette du fichier
IFAClaserDiode.pdf (322.5 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00523657 , version 1 (05-10-2010)

Identifiants

  • HAL Id : hal-00523657 , version 1

Citer

A. Abichou, S. El Asmi, Pierre Rouchon. Flatness-based pre-compensation of laser diodes. 2008 IFAC World Congress, Jul 2008, Seoul, South Korea. pp.1438-1412. ⟨hal-00523657⟩
166 Consultations
102 Téléchargements

Partager

Gmail Facebook X LinkedIn More