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Abstract

This paper describes some of the statistical methods
considered in the ANEMOS project for short-term fore-
casting of wind power. The total procedure typically in-

power predictions have been developed, tested and im-
plemented. The system complexity and the fast fluc-
tuations of wind speed call for a statistical approach,
and hence the development and use of statistical ap-
proaches have been one of the highest priorities during

volves various steps, and all these steps are described inthe ANEMOS project. The ANEMOS project also con-

the paper. These steps include downscaling from refer-
ence MET forecasts to the actual wind farm, wind farm
power curve models, dynamical models for prediction
of wind power or wind speed, estimating the uncertainty
of the wind power forecast, and finally, methods for up-
scaling are considered. The upscaling part considers
how a total regional production can be estimated using
a small number of reference wind farms.

Keywords: Forecasting, power curve, wind farm power
curve, upscaling, uncertainty estimation, probabilistic
forecasts, adaptation.
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Wind energy is the fastest growing technology in the

range of alternative power generation sources. How-
ever, in order to be able to absorb a large fraction of
wind power in the electrical systems reliable short-term

(say 36 hours) predictions of the future wind power gen-

eration are needed. Furthermore it is clear that reliable
uncertainty information is needed for optimising the de-

cision making process resulting from the use of predic-
tions.

This paper briefly reports some of the statistical state
of the art models and methods for wind power fore-
casting which have been developed and used in the
ANEMOS project. In this project a large number of
next generation tools for facilitating short-term wind
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siders physical approaches to wind power forecasting
and an overview of the advances made within this topic
is given in.Giebel et all (2006).

An overview of a state of art wind power prediction
system is outlined in Sectidd 2. Numerical Weather
Prediction (NWP) is a primary input to the statistical
models, and methods for improving the NWP predic-
tions are mentioned in Secti@h 3 followed by methods
for statistical downscaling in Secti@h 4. The wind farm
power curve constitutes an important part of many pre-
diction systems as described in Secfidn 5. Models for
predicting the wind power in wind farms and the related
uncertainty are dealt with in Sectiolid 6 did 7, respec-
tively. Finally, methods for upscaling are considered in
Sectior8.

2 Overview and system consider a-
tions

In Figure[d an overview of the information flow of a
typical ANEMOS forecasting system is depicted. Note
that measured values of the dependent variable (e.g.
wind power production) is used as input to the fore-
casting system. The output of the forecasting system
also includes information regarding the uncertainty of
the forecasts. Furthermore, information from the phys-
ical system, such as the fraction of wind turbines actu-
ally running i.e. not being out for maintenance or other
reasons, and time/calendar information is supplied to
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Figure 1: Overview of the information flow in an advanced t@ging system. The dashed line on the plot of the
forecast indicates the time at which the forecast is geedrat

the system. The Kalman filter is linked to linear systems. How-
The ANEMOS system for wind power forecasts ever, during the ANEMOS project a new way of en-
works on-line. By on-line we understand that the sys- capsulation of non-linear dynamics in the Kalman filter
tem continuously receive the most recent information algorithm was developed and applied to improve NWP
and updates the underlying models for generating the data and particular wind speed — Lal. (2005)
forecasts periodically (typically every 30 minutes). The for further details.
system typically generates forecasts on a broad scale
ranging from a wind farm, a region of interest, and the ~_ Average Absolute Error (% of nominal power)
total considered area. The forecasts for the individual i
wind farms are upscaled with the purpose of generating 19| power predictions
regional forecasts, or forecasts for the entire region. 17 | performance
The wind turbines may be grouped into a region ac- g [
cording to geographical similarities or legislation gov-
erning the connection. In Denmark wind, for instance, 137
the turbines have been grouped in prioritised production 11 | 20% error reduction in
and non-prioritised production. 9l power predictions
In the following we shall briefly describe some of 5
the models and methods developed and used in the
ANEMOS project. An excellent overview of models for

wind power predictions is found |n_Giebel ef al. (2003).

24 48 72 96 120
Horizon (hours)

3 Improving NWPs Figure 2: Improvement on average absolute error by
using the Kalman filtering
Numerical Weather Predictions (NWP) is a primary in-

put to models for short-term forecasting of wind power. Kalman filtering has been applied to SKIRON NWPs
It is, however, well-known that NWP models usually  ysing observations obtained at the Roka wind farm in
exhibit systematic errors in the forecast of certain me- Crete for the whole year of 2003. Wind farm power
teorological parameters especially near the surface.  predictions are provided using the ARMINES AWPPS
In general it is an open question as to whether the use model. Compared to the case of using raw SKIRON
of higher resolution limited area models improves the NWPs, the Kalman filtering processing of the NWPs
forecast skill, and should that be the case, it is still un- |ead to a reduction in the order of 20 % of the forecast
certain whether such improvements compensate the us- error. The largest improvement is seen for large hori-
age of increasing computational resources required for zons, as seen in Figure 2.
such calculations.
In order to reduce these disadvantages, a variety of
approaches using statistical methods have been used4 Statistical downscaling
to post-process NWPs. Most of them are derived
from Model Output Statistics (MOS) or classical lin-  The MET forecasts are available directly only for grid
ear regression models. One of the most successful ap- points in the vicinity of the wind farm, and hence meth-
proaches to this problem is the use of Kalman filters, ods for estimating the wind speed at the wind farm
which is an optimal method for estimating the states of are needed. A simple approach is spatial interpola-
a linear dynamical system. tion from the wind speed forecasts from the surrounding
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grid points.

Analysis during the ANEMOS project have shown
that statistical methods for downscaling (MOS) using
not only the wind speed in grid points, but also the
pressure gradients, gives improved wind power predic-
tions. The statistical methodology for the downscaling
is based on principal components analysis with multiple
regression. Principal components analysis is donein or-
der to transform the selected set of variables (which are
strongly correlated) into a new set of variables not cor-
related, reducing the number of variables.

It is found that the statistical procedure for down-
scaling reduces forecast errors significantly, especially
in complex terrain, as shown in FigUik 3 for the Alaiz
test case. A performance comparison for two different
methods is shown in FiguEé 4:

MOS Here an intermediate step to from the main prin-
cipal components to wind speed is made using lin-
ear regression. The forecasts of power production
are then obtained using a fuzzy logic approach as
described in Sectidd 5.

MOSP Here the forecasted power production is ob-
tained by using the main principal components di-
rectly as input to a fuzzy logic model thereby re-
moving the dependency on measured wind speed.

From the analysis it is seen that the MOSP downscal-
ing model without the intermediate step to wind speed
clearly outperforms the MOS downscaling model.

2-2 S S ——
o
S18
1
— MO8
05 —— HIRLAM NWP
0 T T T T

0 3 = 9 12 18 18 24
Harizon (hours)

21

Figure 3: Statistical downscaling reduces forecast er-
rors. The plot shows RMSE for forecasted wind
speed at the Alaiz wind farm (ES) before downscaling
(HIRLAM NWP) and after downscaling (MOS) for the
0.2° HIRLAM model.

5 Wind Farm Power Curve

In order to model the wind farm power, the conventional
wind turbine “power curve” modelp™” = f(w™")
is typically extended to a wind farm modeh*/ =
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Figure 4: Two methods for downscaling with (MOS)
and without (MOSP) intermediate step to wind speed.
The plot shows normalised RMSE for forecasted power
production at the Alaiz wind farm (ES).

fw®wf wh), by introducing wind direction depen-
dency. By introducing a representative area wind speed
and direction it can be further extended to cover all tur-
bines in an entire regiop?™ = f(w®", §").

Such a two dimensional wind farm power curve
model is illustrated in FigurEl5. This is estimated for
the Alaiz (ES) wind farm using a fuzzy logic approach.

wvined-clirection(®)

Wind-Spesdimis)

Figure 5: A two-dimensional power curve model

The characteristics of the NWP change with the pre-
diction horizon. Hence, in WPPT also the prediction
horizon is included, and the power curve model is:

Perkle = f( Wegr)es e_t+k\ta k)

where

w41 IS forecasted wind speed, and

0¢ 11| is forecasted wind direction. whekes the pre-
diction horizon — see Figufé 6.
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Figure 6: Plots of the estimated power curve for the
Klim (DK) wind farm (k = 0, 12, 24 and 36 hours).

6 Wind farm prediction models

Statistical models such as ARMA, ARX and Box-
Jenkins methods have been used historically for short-
term wind forecasting up to few hours ahead — see for
instanCé_NiﬂLs.en_a.nd.Mad.kdm_(_'LmG% and Landberg et al.
M). It has been mentioned smOOG) that
the parameters of the models should depend on the sea-
son due to the fact that the optimal model substantially
varies between summer and winter. This calls for mod-
els which allow for adaptively estimated parameters.

A dynamical prediction model for power production
in wind farms and regions used in WPPT is given as

pt+klt = aip+aspi1 Jrﬁfik\t +
3 . 24 - 24
2iTh 2iTh
¢ t+k s o t+k
E [Cz cos 24 4 24 ] tm

i=1

wherep; is observed power productioh, € [1;48]
(hours) is prediction horizo ,fiklt is power curve pre-

diction andh??, is time of day. Model features include

e multi-step prediction model to handle non-
linearities and unmodeled effects,

e the number of terms in the model depends on the
prediction horizon,

e non-stationarity are handled by adaptive estima-
tion of the model parameters,

e the deviation between observed and forecasted di-
urnal variation is model by a Fourier expansion.

During the ANEMOS project the fuzzy logic

based approach developed by (Kariniotakis and Pinson

m» has been widely applied. The fuzzy inference
systems are using 'if-then’ rules which are trained us-
ing a period of recorded production data. A simulated
annealing algorithm controls the learning process and
cross-validation is used to optimise the learning pro-
cess. An important advantage of using this expert sys-
tem is the flexibility of the models that one can build.
Output from NWP models are used as input variables.
A final version of the forecasting method developed by
Kariniotakis has led to AWPPS (the ARMINES Wind
Power Prediction System).

Sanchez@e@%)) has proposed a statistical
approach that consists in a dynamic combination of sev-
eral prediction models ranging from reference models
to conditional non-parametric models similar to the one
used in WPPT. The method introduces a competition
between the models, and depending on their recent per-
formance, a combination procedure yield a weighted
average of the best models’ estimates. This prediction
system is called Sipreolico and is used by a Spanish
utility.

In the initial phase of the ANEMOS project a pro-
tocol for standardising the performance evaluation of
short-term wind power prediction models has been sug-
gestedl(Madsen etlal. (2006)). It is recommended that
a minimum set of error measures includes the nor-
malised root mean squared errors and the normalised
bias, where the normalisation is with respect to the in-
stalled capacity in the wind farm.

Furthermore a number of reference prediction mod-
els is described, and it is argued that the use of per-
sistence as a reference model leads to misleading and
over-optimistic conclusions about the performance.

7 Prediction Intervals

During the ANEMOS project a considerable attention
has been put on developing methods for estimating the
uncertainty of wind power forecasts. For the classical
methods in time series analysis the variance of the pre-
diction error depends only on the horizon (see Box and
Jenkinsﬁﬁ 36)). However, in the case of wind power it
is well known that the prediction error depends on the
predicted power as illustrated in Figure 7. As shown
inlLange and Heinemanh (2003) dﬁr@oos) the
error of the wind power forecast is linked to the prevail-
ing weather situation and can be modelled by propagat-
ing the wind speed uncertainty through the non-linear
power curve.

Tools for on-line estimation of the prediction uncer-
tainty are expected to play a major role in trading of
wind power in a liberalised market since they can pre-
vent or reduce penalties in situations of poor prediction
accuracy.
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Figure 7: The prediction uncertainty provides a confi-
dence interval adapted to the individual forecast situa-
tion.

Using data from a 15 MW wind farm in the Dutch
electricity market, and prices and measurements from
the entire year 200@@06) has demonstrated
by using an advanced tool for wind power forecasts, the
costs on the regulation market are diminished by nearly
38 % compared to the use of the persistence forecasts.
Furthermore he showed that having reliable values of
the uncertainty of the forecasts, a further decrease of up
to 39 % is observed for the regulation costs.

During the ANEMOS project two important methods
for reliably estimating the uncertainty of wind power
forecasts have been considered. The first one is based
on MET ensembles, which can be provided by mete-
orological centres (eg. ECMWF, NCEP, etc.). It has
been demonstrated that the raw MET ensembles do not
provide a picture of the true uncertainty, and hence sta-
tistical methods for mapping the MET ensembles into
reliable quantiles have been develop t al.
m». Another approach described in Pinson and
Kariniotakis [20083) and Pi kis (2004)
based on MET ensembles is using a risk index ap-
proach. Two episodes with a 4 member ensemble fore-
casts of wind speed is shown in Figlide 8. A method

based on guantile regression is described in Nielsen
etal. M).

An important approach for estimating the uncertainty
is based on a fuzzy inference model, which permits to
produce conditional error distributions given the fore-
cast conditions. Predictive distributions of the future
wind power generation corresponding to a mixture of
conditions is then obtained by combining the probabil-
ity distributions using either a linear opinion pool or the
adapted resampling approa 006)). An ex-
ample illustrating the probabilistic forecasting appioac

x 250]
é -:m, Translation of
] :1&) weather
E’ a, predictability to
§ .§ “ i power predictability
R N for next day
/ NPRI risk index

risk [l

wind speed [mis]

Low predictability situation

Figure 8: Risk index based uncertainties. Bottom-
left: the alternative predictions are very similar and
we hare quite confident on what will happen. Bottom-
right: the alternative predictions significantly differ —
this lower the confidence on the future weather pre-
dictability. Each situation is represented by a value of
the risk index.

is shown in Figur€lo.
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Figure 9: Probabilistic forecasting

8 upscaling Models

8.1 Reference Wind Farms

Within the ANEMOS project two case studies of re-
gional forecasting were studied to evaluate the perfor-
mance of advanced upscaling models and the method-
ology of reference wind farms selection.

For the upscaling it has been shown in Siebert and
Kariniotakis [2006) that in the optimal upscaling pro-
cedure only a limited number of reference wind farms
shall be used.

In an investigation using data from the Jutland area
in Denmark, where in total 23 reference farms where
available, they showed that the optimal number of refer-
ence wind farms is 3 to 5. The low value of the optimal
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number of reference wind farms can be explained by
the fact that increasing the number of reference farms
increases the amount of available information, but also
the amount of noise the model has to filter. It is im-

portant to select the best combination of reference wind
farms, and it has been shown that best combination ap-
pear to be those that offer the best coverage of the re-
gion in terms of meteorological data. An example of a

reasonable set of reference farms is shown in Figdre 10.

22

EL
(e
8
wm k-
23

Figure 10: A set of reference wind farms for upscaling

For the case of Ireland ESB National Grid provided
data for 11 wind farms. The wind farms are mainly
located in the north-western quarter of Ireland.

The results show that, due to the smoothing effect,
forecast accuracy is higher for regional forecasting than
for individual wind farm forecasting. The average error
for 24 hours ahead for the 2.2 GW capacity in Jutland is
6.2 %. For Ireland, due to the lower spatial smoothing,
the error for 24 hours ahead is 11.6 %.

8.2 Modesfor upscaling

The dynamic upscaling model used in WPPT for a re-
gion is:

~reg

_ —ar nar ~loc
Do = SO o5 O g )Pk

where f)é‘jfkl ]
within the region,wHklt
speed, an@fjr'k‘t is forecasted regional wind direction.
The characteristics of the NWP apé® change with
the prediction horizon. Hence the dependency of pre-
diction horizonk in the model.

is a local (dynamic) power prediction
oér |, is forecasted regional wind

Froduction
—+— 6 hour forecast

Normalized Power (%)

20 B0
Time (hours)

40 30

Figure 11: The observed production and the corre-
sponding 6 hour forecast

InlLangk (2003) the effect of spatial smoothing has
been investigated, and it is shown that spatial smoothing
gives a 22-50 % error reduction for a fairly small area.

An upscaling method based on linear regression has
been developed by the University of Oldenburg. The
coloured squares on Figurgl 12 indicate how large a frac-
tion of the total the local wind farm represents, while
the circles denote the weight of each reference wind
farm. The RMS of the upscaled wind forecasts is com-
pared with the average of the reference wind farm in
Figure[T3.

A method for upscaling of regional wind generation
by a dynamic fuzzy neural network based approach is

described in_Pinson etlal. (2003).

9 Automatic tuning of models

9.1 Adaptivity

Since the physical system considered is non-stationary
it is a precondition for the computer system to be able
to adapt to changes in the physical system. A typical
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speeds actually occurring — see_Nielsen et lal. (2000,
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Figure 14: Variation of the forgetting factor

Typically the forgetting of old information is ob-
tained by using a forgetting factor which is multiplied
on the available information, ie. a forgetting factor
equal one means that all the old information is kept in
the model. During the ANEMOS project various meth-
ods for optimally calculating the forgetting factor has
been developed. Examples showing the variations of
the forgetting factor is shown in FiguEel14. The curves
show the resulting values of the forgetting factor using
two different methods for calculating the time varying
forgetting factor. In both cases the problem of initialis-
ing a dynamic model is considered. For a given value
of the forgetting facto, the effective number of obser-
vations,N. ¢y is given as

1

Nepr =1x
example is changes in the roughness; e.g. due to the an-The SD marked curve in Figufell4 corresponds to a
nual variation or new obstacles near the wind turbines. method where a bounded valug € 1) for the for-
Also changes in the NWP models, the population of getting factor is used. It it seen that occasionally the
wind turbine, and dirtiness of the blades call for the sys- forgetting factor drops to a value which actually implies
tem to be able automatically to adapt to changes. The that nearly all historical information is lost.

computer system should detect this and adaptto the new  During the ANEMOS project an alternative method

situation without human intervention.

A simple procedure for tracking changes over time
is to disregard old information as new information be-
comes available. Since long periods without high winds
often occur it is crucial that the procedure for track-
ing the relationship between the meteorological forecast
and the wind power production only disregards old in-
formation near wind speeds actually occurring. Hence

is developed|(Christiansen efl &l. (2006)) which allow

for an unbounded optimisation in finding the optimal
value of \. This method is represented by the smooth
curve, and it is seen that a more reasonable variation of
the forgetting is obtained.

9.2 Bandwidth

a dedicated adaptive scheme for parameter estimation During the ANEMOS project non-parametric and con-

must be used. In WPPT a non-parametric model for the
power curve is used, which allow for a strait forward
approach to only disregard old information for wind

ditional parametric methods are used widely to describe
non-linear relations like the wind farm power curve.
If linear parametric model contains some coefficients

7



which are unknown functions of some explanatory vari-
ables one possibility is to use a conditional paramet-
ric model, which is a non-linear model formulated as a
linear model in which the parameters are replaced by
smooth, but otherwise unknown, functions of one or
more explanatory variables. These functions are called
coefficient-functions. When using local regression to
estimate the coefficient functions in a conditional para-
metric model a number of distinct points are selected
as fit points for the local models, and the data points
in the neighbourhood of the fit point is used to fit the
local model. The size of the neighbourhood entering
into the estimation of the local model is determined
by the bandwidthassociated with the fit point. During
the ANEMOS project a method for finding the optimal
bandwidth has been developed.

0.5

045

0.ty
!

035

0.3

Bandwidth
o
o N
[N a

o
[
o

o
-

o
=)
a

I I
5000 6000
Samples

9000

0 I I I I
0 1000 2000 3000 4000 7000 8000 10000

Figure 15: A Gaussian weight function is used to opti-
mise the bandwidth at nine fitting points. Both steepest
descent traces and fix bandwidth optimised on the last
half of the data are shown.

In Figure[Id a Gaussian weight function is used to
optimise the bandwidth at nine fitting points. By this
approach an optimal smooth estimate of for instance the
wind farm power curve can be estimated.

On top of the nine traces of the bandwidth as op-

timised by steepest descent are corresponding lines

showing the optimal fixed bandwidth measured over the

towards the optimal value.
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