J. R. Cannon, The one-dimensional heat equation, of Encyclopedia of Mathematics and its applications, 1984.
DOI : 10.1017/CBO9781139086967

M. Chèbre, Y. Creff, and N. Petit, Feedback control and optimization for the production of commercial fuels by blending, Journal of Process Control, vol.20, issue.4, pp.441-451, 2010.
DOI : 10.1016/j.jprocont.2010.01.008

F. , D. Meglio, G. Kaasa, and N. Petit, A first principle model for multiphase slugging flow in vertical risers, Proc. of the 48th IEEE Conf. on Decision and Control, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00474370

F. , D. Meglio, G. Kaasa, N. Petit, and V. Alstad, Model-based control of slugging flow: an experimental case study, Proc. of the 2010 American Control Conference, p.2010
URL : https://hal.archives-ouvertes.fr/hal-00525797

J. Dieulot, N. Petit, P. Rouchon, and G. Delaplace, An arrangement of ideal zones with shifting boundaries as a way to model mixing processes in unsteady stirring conditions in agitated vessels, Chemical Engineering Science, vol.60, issue.20, pp.605544-5554, 2005.
DOI : 10.1016/j.ces.2005.03.067

J. Dieulot, N. Petit, P. Rouchon, and G. Delaplace, A TORUS MODEL CONTAINING A SLIDING WELL-MIXED ZONE AS A WAY TO REPRESENT MIXING PROCESS AT UNSTEADY STIRRING CONDITIONS IN AGITATED VESSELS, Chemical Engineering Communications, vol.80, issue.79, pp.805-826, 2005.
DOI : 10.1016/0378-4754(94)90059-0

W. B. Dunbar, N. Petit, P. Rouchon, and P. Martin, Boundary control of a nonlinear Stefan problem, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), 2003.
DOI : 10.1109/CDC.2003.1272790

W. B. Dunbar, N. Petit, P. Rouchon, and P. Martin, Motion Planning for a nonlinear Stefan Problem, ESAIM: Control, Optimisation and Calculus of Variations, vol.9, pp.275-296, 2003.
DOI : 10.1051/cocv:2003013

E. Duret, Dynamique et contrôle desécoulementsdesécoulements polyphasiques, 2005.

V. Henriot, E. Duret, E. Heintz, and A. Courbot, Multiphase Production Control: Application to Slug Flow, Oil & Gas Science and Technology, vol.57, issue.1, pp.87-98, 2002.
DOI : 10.2516/ogst:2002006

URL : http://doi.org/10.2516/ogst:2002006

C. D. Hill, Parabolic equations in one space variable and the non-characteristic cauchy problem, Communications on Pure and Applied Mathematics, vol.139, issue.3, pp.619-633, 1967.
DOI : 10.1002/cpa.3160200309

B. Hu, Characterizing gas-lift instablilities, 2004.

G. Kaasa, Attenuation of Slugging in Unstable Oil Wells by Nonlinear Control, Proc. of the 17th IFAC World Congress, 2008.
DOI : 10.3182/20080706-5-KR-1001.01055

S. J. Khang and O. Levenspiel, New scale-up and design method for stirrer agitated batch mixing vessels, Chemical Engineering Science, vol.31, issue.7, pp.569-577, 1976.
DOI : 10.1016/0009-2509(76)80020-6

O. Lepreux, Model-based temperature control of a diesel oxidation catalyst, Journal of Process Control, vol.22, issue.1, 2009.
DOI : 10.1016/j.jprocont.2011.10.012

URL : https://hal.archives-ouvertes.fr/hal-00661530

O. Lepreux, Y. Creff, and N. Petit, Motion planning for a Diesel Oxidation Catalyst outlet temperature, 2008 American Control Conference, 2008.
DOI : 10.1109/ACC.2008.4586801

O. Lepreux, Y. Creff, and N. Petit, Model-based Control Design of a Diesel Oxidation Catalyst, ADCHEM 2009, International Symposium on Advanced Control of Chemical Processes, 2009.
DOI : 10.3182/20090712-4-TR-2008.00043

URL : https://hal.archives-ouvertes.fr/hal-00486070

O. Lepreux, Y. Creff, and N. Petit, Warm-up strategy for a diesel oxidation catalyst, Proc. of European Control Conf, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00492397

A. F. Lynch and J. Rudolph, Flatness-based boundary control of a nonlinear parabolic equation modelling a tubular reactor, Lecture Notes in Control and Information Sciences Nonlinear Control in the Year, vol.259, issue.2, pp.45-54, 2000.
DOI : 10.1007/BFb0110290

N. Petit, Y. Creff, and P. Rouchon, Motion planning for two classes of nonlinear systems with delays depending on the control, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), pp.1007-1011, 1998.
DOI : 10.1109/CDC.1998.760828

L. I. Rubinstein, The Stefan problem, volume 27 of Translations of mathematical monographs, AMS, 1971.

L. Sinègre, Dynamic study of unstable phenomena stepping in gaslift activated systems, 2006.

L. Sinègre, N. Petit, P. Lemétayer, P. Gervaud, and P. Ménégatti, CASING-HEADING PHENOMENON IN GAS-LIFTED WELL AS A LIMIT CYCLE OF A 2D MODEL WITH SWITCHES, Proc. of the 16th IFAC World Congress, 2005.
DOI : 10.3182/20050703-6-CZ-1902.01662

L. Sinègre, N. Petit, and P. Ménégatti, Predicting instabilities in gas-lifted wells simulation, 2006 American Control Conference, 2006.
DOI : 10.1109/ACC.2006.1657604

L. Sinègre, N. Petit, and T. Saint-pierre, ACTIVE CONTROL STRATEGY FOR DENSITY-WAVE IN GAS-LIFTED WELLS, Proc. of the ADCHEM 2006, International Symposium on Advanced Control of Chemical Processes, 2006.
DOI : 10.3182/20060402-4-BR-2902.01075

E. Storkaas, Control solutions to avoid slug flow in pipeline-riser systems, 2005.

A. J. Torre, R. N. Blais, J. Brill, D. Doty, and Z. Schmidt, Casingheading in flowing wells, SPE Production Operations Symposium, no. SPE 13801, 1987.