, Directive 2001/77/EC of the European Parliament and of the Council, on the promotion of electricity produced from renewable energy sources in the internal electricity market, Official Journal of the European Commission, 2001.

A. Zervos, Developing wind energy to meet the Kyoto targets in the European Union, Wind Energy, vol.6, pp.309-319, 2003.

S. Thor and P. Weis-taylor, Long-term research and development needs for wind energy for the time frame, Wind Energy, vol.5, pp.73-75, 2000.

J. G. Carney, P. Cunningham, and U. Bhagwan, Confidence and prediction intervals for neural network ensembles, Proc. of the International Joint Conference on Neural Networks, 1999.

T. Heskes, Practical confidence and prediction intervals, Advances in Neural Information Processing Systems 9, 1997.

R. D. Veaux, J. Schumi, J. Schweinberg, D. Shellington, and L. H. Ungar, Prediction intervals for neural networks via nonlinear regression, American Statistical Association, vol.40, 1998.

A. Luig, H. G. Bofinger, and . Beyer, Analysis of confidence intervals for the prediction of regional wind power output, Proc. of the 2001 European Wind Energy Association Conference, EWEC'01, pp.725-728, 2001.

M. Lange and H. Waldl, Accuracy of short-term wind power prediction depending on meteorological conditions, Proc. of the 2002 Global Windpower Conference, 2002.

M. Lange and D. Heinemann, Relating the uncertainty of short-term wind speed prediction to meterological situations with methods from synoptic climatology, Proc. of the 2003 European Wind Energy Association Conference, EWEC'03, 2003.

P. Pinson and G. Kariniotakis, On-line assessment of prediction risk for wind power production forecasts, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01721503

H. Madsen, H. A. Nielsen, T. S. Nielsen, G. Kariniotakis, and P. Pinson, A protocol for standardizing the performance evaluation of short-term wind power prediction models, Proc. of the 2004 Global Windpower Conference, 2004.

P. Pinson and G. Kariniotakis, Uncertainty and prediction risk assessment of short-term wind power forecasts, Proc. of the 2004 EAWE Conference, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00529594

L. Landberg, G. Giebel, L. Myllerup, J. Badger, H. Madsen et al., Poor-man's ensemble forecasting for error estimation, Proc. of the, 2002.

, American Wind Energy Association conference, 2002.

T. Masters, Neural, Novel & Hybrid Algorithms for Time Series Prediction, 1995.

J. L. Simon, Resampling: The new statistics. Available online, 1997.

L. Wang, Adaptive fuzzy systems and control, 1994.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with formulas, graphs, and mathematical tables, 1991.

J. M. Murphy, The impact of ensemble forecasts on predictability, Q. J. R. Meteorol. Soc, vol.114, pp.463-493, 1988.

J. U. Joergensen and C. Moehrlen, Verification of ensemble prediction systems for a new market: wind energy, Special project interim report, available online, 2003.

Z. Toth, Y. Zhu, and T. Marchock, The use of ensembles to identify forecasts with small and large uncertainty, Weather and Forecasting, vol.16, issue.4, pp.463-477, 2001.

G. Kariniotakis and D. Mayer, An advanced on-line wind resource prediction system for the optimal management of wind parks, Proc. of the 2002 Med-Power Conference, 2002.