Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Periodic input estimation for linear periodic systems: Automotive engine applications

Abstract : In this paper, we consider periodic linear systems driven by T0-periodic signals that we desire to reconstruct. The systems under consideration are of the form dx/dt=A(t)x+A0(t)w(t), y=C(t)x, x ∈ Rn, w ∈ Rm, y ∈ Rp, (m leq p leq n) where A(t), A0(t), and C(t) are T0-periodic matrices. The period T0 is known. The T0-periodic input signal w(t) is unknown but is assumed to admit a finite dimensional Fourier decomposition. Our contribution is a technique to estimate w from the measurements y. In both full state measurement and partial state measurement cases, we propose an efficient observer for the coefficients of the Fourier decomposition of w(t). The proposed techniques are particularly attractive for automotive engine applications where sampling time is short. In this situation, standard estimation techniques based on Kalman filters are often discarded (because of their relative high computational burden). Relevance of our approach is supported by two practical cases of application. Detailed convergence analysis is also provided. Under standard observability conditions, we prove asymptotic convergence when the tuning parameters are chosen sufficiently small.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : François Chaplais <>
Soumis le : vendredi 5 novembre 2010 - 18:04:30
Dernière modification le : jeudi 24 septembre 2020 - 17:04:18



Jonathan Chauvin, Gilles Corde, Nicolas Petit, Pierre Rouchon. Periodic input estimation for linear periodic systems: Automotive engine applications. Automatica, Elsevier, 2007, 43 (6), pp.971-980. ⟨10.1016/j.automatica.2006.12.012⟩. ⟨hal-00533372⟩



Consultations de la notice