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This paper presents an active control dedicated to the positioning of vertical
offshore structures. The trajectory planning and the closed loop system use a
convenient model given by the Bernoulli’s historical cable equation, completed
with a damping factor, that linearly depends on the structure speed. Its solution
is directly used in the control design, providing an extension to previous works
on control of heavy chains and offshore structures.
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Introduction

This paper presents an active control dedicated to a re-entry problem found
in the offshore oil industry. The re-entry operation consists in connecting the
bottom of a very long pipeline to the wellhead, by dynamically modifying the
pipeline top position, which is linked to a floating device (vessel or platform).
These long pipelines are usually called risers, because they are used to rise the
drilling mud or the hydrocarbons from the wellhead to the platform. Nowadays
the re-entry operation is done manually. The use of an active control intends
to reduce the operation time, and to make it possible even under bad weather
conditions. The considered offshore structure can be analyzed as a cable sub-
merged in a flow. A convenient model is given by the Bernoulli’s historical cable
equation, completed with a damping factor, that linearly depends on the struc-
ture speed. The damping factor is developed in series around zero, to get an
approximate solution. The corresponding model turns out to be differentially
flat[1], a property directly used in the control design, providing an extension
to previous works of Petit and Rouchon [2], Thull et al [3], and Sabri [4]. The
presented solution permits to calculate the reference trajectory for the riser top
position, from a pre-defined reference trajectory for the riser bottom position.
A tracking controller is used to ensure that the trajectories are followed with
stability. Numerical simulations with two different disturbances are presented.
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1 Governing equations

Generally, offshore structures are slender and their transverse displacements are
small when compared to their height, so they can be analyzed as a linearized
Euler-Bernoulli beam with a constant section, under an axial traction plus ex-
ternal forces from the fluid [5]:

ms
∂2Υ
∂t2

= −EJ
∂4Υ
∂z4

+
∂

∂z

(
T

∂Υ
∂z

)
+ F (z, t) (1)

Equation (1) represents the dynamic behavior of the structure in the direction
of its main horizontal displacement. The variable Υ represents the structure
displacement in this direction and is a function of two parameters: the time
t and z, representing the height from the seabed. The other variables are the
linear mass ms, the mechanical tension T , the Young’s modulus E, the second
moment of inertia J , and the hydrodynamic forces in this direction, represented
by F . The Morison’s equation defines the hydrodynamic forces associated to a
relative displacement of a submerged body in a fluid (see [5]):

F (z, t) = −mF
∂2Υ
∂t2

− µ
∂Υ
∂t

∣∣∣∣
∂Υ
∂t

∣∣∣∣ (2)

Considering µ as the drag constant and mF as the fluid added mass, denoting
m = mS + mF , we can rewrite equation (1) as:

m
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− µ

∂Υ
∂t

∣∣∣∣
∂Υ
∂t

∣∣∣∣ (3)

In the case of the re-entry operation, the displacement has low frequencies, so
that ∂

∂z

(
T ∂Υ

∂z

) À −EJ ∂4Υ
∂z4 (for low natural modes, the beam effects can be

neglected). The tension for a disconnected riser in these conditions is a linear
function of its weight and can be defined as T = (ms−ρS)z, where ρ represents
the water density and S the transverse section surface. Dividing equation (3)
by m we get:

∂2Υ
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= +
∂

∂z
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m
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)
− µ

m
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∂Υ
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∣∣∣∣
The constant term (ms − ρS)/m can be replaced by the effective gravity g. It
is proposed to linearize the drag term, substituting the term µ

m

∣∣∂Υ
∂t

∣∣ by the
constant τ , that is calculated as a function of µ/m and of the mean value of ∂Υ

∂t
along the structure. With this approximation the system equation becomes the
cable equation defined by Bernoulli (see [2]) plus a linear damping factor:

∂2Υ
∂t2

(z, t) =
∂

∂z

(
gz

∂Υ
∂z

(z, t)
)
− τ

∂Υ
∂t

(z, t) (4)

2 Motion planning

In this section, we present an analytical solution of equation (4) in the Laplace
domain, following the idea proposed by Petit and Rouchon [2]. This solution is
developed in Taylor’s series, in order to formally inverse the Laplace transform.
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Then, it is possible to determine, in the time domain, an approximation of the
open loop top riser trajectory, that is a function of the reference trajectory for
the riser bottom. The first step is the change of variable l = 2

√
z/g, which

yields ∂
∂z = 2

gl
∂
∂l , that transforms equation (4) into:

−l
∂2Υ
∂t2

(l, t)− τ l
∂Υ
∂t

(l, t) +
∂Υ
∂l

(l, t) + l
∂2Υ
∂l2

(l, t) = 0 (5)

Using a t−Laplace transform and considering the cable totally stopped at t = 0,
equation (5) can be rewritten, with Υ̂ the Laplace transform of Υ, as:

−ls2Υ̂(l, s)− τ lsΥ̂(l, s) +
∂Υ̂
∂l

(l, s) + l
∂2Υ̂
∂l2

(l, s) = 0 (6)

The change of variable ζ = il
√

s(s + τ) transforms (6) into a Bessel equation
of the first kind:

ζΥ̂(ζ, s) +
∂Υ̂
∂ζ

(ζ, s) + ζ
∂2Υ̂
∂ζ2

(ζ, s) = 0

The solution Υ̂(z, s) has the following form:

Υ̂(z, s) = c1J0(2i
√

s(s + τ)
√

z/g) + c2Y0(2i
√

s(s + τ)
√

z/g)

where J0 and Y0 are respectively the Bessel functions of first and second kinds
[6]. Sought after solutions are finite for ζ = 0, so these solutions must be such
that c2 = 0:

Υ̂(z, s) = Υ̂(0, s)J0(2i
√

s(s + τ)
√

z/g)

Another way to define Υ̂(z, s) is:

Υ̂(z, s) =
1
2π

∫ π

−π

exp(−2
√

s(s + τ)
√

z/g sin θ)Υ̂(0, s)dθ (7)

The term exp(−2
√

s(s + τ)
√

z/g sin θ) in equation (7) can be expanded into a
Taylor series around τ = 0:
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√
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√

z

g
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√
s2

√
z/g sin θ) · · ·

· · · − τ exp(−2
√

s2
√
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√
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· · ·+ τ2 exp(−2
√

s2
√
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(
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g
+

√
z/g

sin θ

2s

)
+ · · ·

The interest of the Taylor series is to simplify the Laplace transform inversion.
The terms of the series can be analyzed as delays and easily associated to the
reference trajectory Υ(0, t):

Υ(z, t) =
1
2π

∫ π

−π

(
Υ(0, t− 2

√
z/g sin θ)

−τΥ(0, t− 2
√

z/g sin θ)
√

z/g sin θ

+τ2Υ(0, t− 2
√

z/g sin θ)
z sin2 θ

g

+
τ2

2

∫ t

0

Υ(0, %− 2
√

z/g sin θ)
√

z/g sin θd% + · · ·
)

dθ

(8)
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The open loop solution is found by numerically integrating equation (8), to de-
fine the control trajectory Υo(L, t), where L is the riser length. The simulation
example in Figure 1 shows that the approximations made have a small effect on
the system response. The considered discrete system for all numerical simula-
tions comes from the discretization of equation (1), for a vertical 2 km long steel
riser with (external diameter = 0.55 m, internal diameter = 0.5 m). These are
typical values for a drilling riser in deep water. In figure 1, the hydrodynamic
force is represented by equation (2).

3 System control

3.1 Unperturbed case

Consider ΥR = Υ − Υo the relative displacement of Υ around the reference
trajectory Υo. The objective is to define a tracking system to force the conver-
gence of ΥR to zero. Following the idea proposed by Thull et al [3], a candidate
Lyapunov function, based on the system energy associated to ΥR, is given by

V =
LΥ2

R(L, t)
2ϑ2

+
1
2

∫ L

0

(
z

(
∂ΥR

∂z

)2

+
(

∂ΥR

∂t

)2
)

dz

Parameter ϑ represents the convergence time and determines the energy associ-
ated to the relative displacement of the structure top. Using equation (4), the
time derivative of V is computed as follows:

dV

dt
=

LΥR(L, t)
ϑ2

∂ΥR

∂t
(L, t) +

∫ L

0

(
z
∂ΥR

∂z

∂2ΥR

∂z∂t

)
dz · · ·

· · ·+
∫ L

0

(
∂ΥR

∂t

(
∂

∂z

(
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∂Υ
∂z

)
− τ

∂Υ
∂t

))
dz

(9)

After integration by parts, it comes

dV

dt
= L

∂ΥR

∂t
(L, t)

(
g
∂ΥR

∂z
(L, t) +

ΥR(L, t)
ϑ2

)
− τ

∫ L

0

(
∂ΥR

∂t

)2

dz

A proposed control law is

∂ΥR

∂t
(L, t) = −α

(
g
∂ΥR

∂z
(L, t) +

ΥR(L, t)
ϑ2

)
(10)

With this law, dV/dt ≤ 0, so the system converges to the largest invariant set
contained in dV/dt = 0. This set is such that

g
∂ΥR

∂z
(L, t) +

ΥR(L, t)
ϑ2

= 0

and ∫ L

0

(
∂ΥR

∂t

)2

dz = 0

this last relation implying ∂ΥR/∂t(z, t) = 0 for all z and all t. For this set, by
construction of the control law, we also have ∂ΥR/∂t(L, t) = 0, which means
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that ΥR(L, t) is constant. Then, ∂ΥR/∂z(L, t) is also constant. At rest, the
balance of the external forces is given, at the top, by the sum of Ft, accounting
for the horizontal part of the tension at the top of the structure, and Fp, the
resultant of the disturbances. By definition, Ft is proportional to ∂ΥR/∂z(L, t).
In this unperturbed case, Fp = 0, so Ft = 0 and ∂ΥR/∂z(L, t) = 0, which
leads to ΥR(L, t) = 0. This reasoning on external forces can be applied to the
rest of the structure, and in particular gives ΥR(0, t) = ΥR(L, t) = 0: the re-
entry operation is successful. Using the top position as the control variable, the
control law writes in practice:

Υ(L, t) = Υo(L, t)− α

∫ t

0

(
g
∂ΥR

∂z
(L, v) +

ΥR(L, v)
ϑ2

)
dv (11)
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Figure 1: Unperturbed case. Reference trajectory and system response.

3.2 Disturbances

In practical cases of interest, the structure has two main kinds of disturbances,
that change the flow speed: waves and marine currents. The waves have their
energy concentrated on the first meters of depth. They normally have two
mains frequencies, the faster around 50 mHz and the other around 10 mHz.
The marine currents have their energy distributed more uniformly, with smooth
time variations. The effect of the marine currents generates an offset that slowly
changes. The changes of the flow speed due to these disturbances are represented
by the function U(z, t), that, with respect to the unperturbed case given by (2),
induces the following changes in the form of the hydrodynamic forces (mI is a
constant usually called the inertia coefficient):

F (z, t) = −mF
∂2Υ
∂t2

+ µ

(
U(z, t)− ∂Υ

∂t

) ∣∣∣∣U(z, t)− ∂Υ
∂t

∣∣∣∣ + mI
∂U

∂t
(12)
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Constant disturbances During the re-entry operation, the marine current
can be assumed constant and generates a static deformation of the structure
Ῡ(z). If the assumption of small angles in the vertical direction holds, Ῡ(z) can
be defined by

− ∂

∂z

(
gz

∂Ῡ
∂z

(z)
)

=
µ

m
U(z)|U(z)|

with the boundary condition Ῡ(L) = 0. In these conditions, when the control
law used in the unperturbed case is applied, it is easily proved that the system
is stabilized at an equilibrium point given by Υ(z, t) = Ῡ(z) − gϑ2∂Ῡ/∂z(L).
To avoid this bias at the bottom, we propose the following solution. Before
applying the control law:

• Estimate the current distance from the bottom to the wellhead. From this
estimation, choose a reference trajectory for the bottom, and compute the
reference trajectory for the top as in the unperturbed case.

• Estimate the current angle at the top (∂Ῡ/∂z(L)).

The definition of ΥR(z, t) is modified into ΥR(z, t) = Υ(z, t)−Υo(z, t)− Ῡ(z).
Then, the computation of the control law obeys (11), exactly like in the un-
perturbed case. Indeed, the only difference lies in the use of the estimation
∂Ῡ/∂z(L). Simulation closed loop results are presented in Figure 2.
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Figure 2: Structure under constant disturbance due to the current. Reference
trajectory and closed loop response.

Periodic disturbances In the case of waves, the structure deformation linked
to this disturbance is not constant. We still miss a formal approach for the closed
loop control in this case. Approaches like those proposed by Sabri can be used
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[4]. However, regarding equation (12), it is possible to observe that an artificial
increase of the structure speed ∂Υ/∂t implies a larger system damping, that
reduces the relative effect of the flow speed changes. The proposed approach
consists in simply using an open loop trajectory, that is fast enough to increase
the damping during a given period of time, in order to reduce the effect of waves.
Figure 3 provides an example of what can be obtained with this approach. The
shape of the reference trajectory is such that the reference speed is kept large
almost until the end of the bottom displacement. This avoids the increase of
the disturbances before the structure has reached its target. A problem with
this approach is that, for a given disturbance, a maximum speed must be used,
during a large enough period for the disturbances to attenuate. This turns out
to require a minimum initial distance between the bottom of the structure and
the wellhead. The choice of this maximum speed is constrained by the following
considerations, that are difficult to quantify a priori and do not preclude the
constraints of the actuators:

• if the speed is too large, the small angles assumption does not hold any-
more, and more terms are required in the expansion of the damping term;

• if the acceleration is too large, the beam effect is no more negligible.
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Figure 3: Structure under periodic disturbance due to waves. Reference trajec-
tory and open loop response.

Conclusion

This article presents an analytical solution for the trajectory planning of a
damped cable and uses a tracking system able to correct systems imperfections
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and constant disturbances. Another point is the possibility to reduce distur-
bances with the design of the open loop trajectory. However the design of a
closed loop to reject periodic disturbances remains an open problem.
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[1] Fliess, M., Lévine, J., Martin, Ph. and Rouchon, P. (1995). Flatness and
defect of nonlinear systems: introductory theory and examples. Int. J. Con-
trol, 61(6):1327–1361.

[2] Petit, N., Rouchon P. (2001) Flatness of Heavy Chain Systems, SIAM Jour-
nal on Control and Optimization.

[3] Thull, D., Wild, D., Kugi, K. (2006). Application of Combined Flatness-
and Passivity-Based Control Concept to a Crane With Heavy Chains and
Payload, IEEE International Conference on Control Applications.

[4] Sabri, R. (2004). Installation des Conduites Pétrolières en Mer Profonde
par Contrôle Actif, PhD Thesis, Centre Automatique et Systèmes - École
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