Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

An advanced On-line Wind Resource Prediction system for the optimal management of wind park

Abstract : The paper presents an advanced wind forecasting system that uses on-line SCADA measurements, as well as numerical weather predictions as input to predict the power production of wind parks 48 hours ahead. The prediction tool integrates models based on adaptive fuzzy-neural networks configured either for short-term or long-term forecasting. In each case, the model architecture is selected through non-linear optimization techniques. The forecasting system is integrated within the MORE-CARE EMS software developed in the frame of a European research project. Within this on-line platform, the forecasting module provides forecasts and confidence intervals for the wind farms in a power system, which can be directly used by economic dispatch and unit commitment functions. The platform can run also as a stand-alone application destined only for wind forecasting. Detailed results are presented on the performance of the developed models on a real wind farm using HIRLAM numerical weather predictions as input.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal-mines-paristech.archives-ouvertes.fr/hal-00534195
Contributeur : Corinne Matarasso <>
Soumis le : vendredi 4 mai 2018 - 10:28:34
Dernière modification le : mercredi 14 octobre 2020 - 04:02:22

Fichier

MED02-072a.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00534195, version 1

Citation

Georges Kariniotakis, Didier Mayer. An advanced On-line Wind Resource Prediction system for the optimal management of wind park. Med Power 2002, Nov 2002, Athènes, Greece. ⟨hal-00534195⟩

Partager

Métriques

Consultations de la notice

148

Téléchargements de fichiers

80