Skip to Main content Skip to Navigation
Journal articles

Prediction of intergranular strains in cubic metals using a multisite elastic-plastic model

Abstract : A novel approach is adopted for determining the elastic and plastic strains of individual grains within a deformed polycrystalline aggregate. In this approach, termed "multisite modeling", the deformation of a grain does not merely depend on the grain lattice orientation. It is also significantly influenced by the interaction with one or several of the surrounding grains. The elastic-plastic constitutive law is integrated by identifying iteratively which dislocation slip systems are activated within the grains, and the local stress tensor is shown to be the solution of a linear equation set. Several micro-macro averaging schemes are considered for the distribution of the macroscopic load over the polycrystalline aggregate. These averaging schemes are tested by simulating the development of intergranular strains during uniaxial tension of MONEL-400 as well as commercial purity aluminium. Neutron diffraction measurements of the elastic lattice strains are used as a reference in order to discriminate between the various predictions. The results demonstrate the relevance of "multisite" grain interactions in f.c.c. polycrystals.
Document type :
Journal articles
Complete list of metadata
Contributor : Corinne Matarasso Connect in order to contact the contributor
Submitted on : Tuesday, November 9, 2010 - 2:00:25 PM
Last modification on : Wednesday, November 17, 2021 - 12:28:13 PM

Links full text



Laurent Delannay, Roland E. Logé, Yvan Chastel, Paul van Houtte. Prediction of intergranular strains in cubic metals using a multisite elastic-plastic model. Acta Materialia, Elsevier, 2002, 50 (20), p.5127-5138. ⟨10.1016/S1359-6454(02)00369-5⟩. ⟨hal-00534359⟩



Record views