J. C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, and C. Jochum, and 92: New grades for advanced coal-fired?Properties and experience, International Journal of Pressure Vessels and Piping, vol.24, issue.85, pp.911-949, 2008.

N. J. Hoff, The necking and the rupture of rods subjected to constant tensile loads, Journal Applied Mechanics, vol.20, issue.1, pp.105-108, 1953.

G. Eggeler, J. C. Earthman, and N. Nilsvang, Microstructural study of creep rupture in a 12% chromium ferritic steel, Acta Metallurgica, vol.37, issue.1, pp.49-60, 1989.
DOI : 10.1016/0001-6160(89)90265-4

F. Masuyama, Hardness model for creep-life assessment of high-strength martensitic steels, Materials Science and Engineering: A, vol.510, issue.511, pp.154-157, 2008.
DOI : 10.1016/j.msea.2008.04.133

E. W. Hart, Theory of the tensile test, Acta Metallurgica, vol.15, issue.2, pp.351-355, 1957.
DOI : 10.1016/0001-6160(67)90211-8

J. Lemaitre and J. L. Chaboche, Mechanics of solid materials, 1994.

S. Straub, M. Meier, J. Ostermann, and W. Blum, Development of microstructure and strengthening in ferritic steel X20CrMoV 12 1 at 823K during long-term creep tests and during annealing VGB Kraftwerkstechnik, pp.646-653, 1993.

V. Gaffard, J. Besson, and A. F. Gourgues-lorenzon, Creep failure model of a tempered martensitic stainless steel integrating multiple deformation and damage mechanisms, International Journal of Fracture, vol.19, issue.3, pp.139-166, 2005.
DOI : 10.1007/s10704-005-2528-8

URL : https://hal.archives-ouvertes.fr/hal-00154843

F. Abe, Stress to produce a minimum creep rate of 10 -5 %/h and stress to cause rupture at 10