Cyclic loadings and crystallization of natural rubber: An explanation of fatigue crack propagation reinforcement under a positive loading ratio - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Materials Science and Engineering: A Année : 2011

Cyclic loadings and crystallization of natural rubber: An explanation of fatigue crack propagation reinforcement under a positive loading ratio

(1) , (2) , (2)
1
2

Résumé

Natural rubber is known to have excellent fatigue properties. Fatigue crack propagation studies show that, under uniaxial tension loading, fatigue crack growth resistance increases with the loading ratio, even if the peak stress increases. Studies dealing with crack initiation confirm this trend. If strain induced crystallization is believed to play a major role in this reinforcement process, it is not clear yet by which mechanism this reinforcement takes place. Using SEM investigation, it is shown here that the reinforcement process is associated with strong crack branching in the crack tip region. From experimental results it is shown that under particular reinforcing loading condition a cyclic strain hardening process can be observed on the natural rubber which is able to overcome classically observed softening effects. A cumulative strain induced crystallization process is proposed to explain the stress ratio effect on fatigue crack initiation and propagation properties of natural rubber.
Fichier principal
Vignette du fichier
SCP.pdf (1.38 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00553173 , version 1 (28-09-2017)

Identifiants

Citer

Nicolas Saintier, Georges Cailletaud, Roland Piques. Cyclic loadings and crystallization of natural rubber: An explanation of fatigue crack propagation reinforcement under a positive loading ratio. Materials Science and Engineering: A, 2011, 528 (3), pp.1078-1086. ⟨10.1016/j.msea.2010.09.079⟩. ⟨hal-00553173⟩
156 Consultations
567 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More