M. J. Beran and J. Molyneux, Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media, Quarterly of Applied Mathematics, vol.24, issue.2
DOI : 10.1090/qam/99925

M. J. Beran, Statistical Continuum Theories, 1968.
DOI : 10.1119/1.1974326

G. J. Berryman, Variational bounds on elastic constants for the penetrable sphere model, Journal of Physics D: Applied Physics, vol.18, issue.4, pp.585-597, 1985.
DOI : 10.1088/0022-3727/18/4/003

H. Chen and A. Acrivos, The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations, Int. J. Solids Structures, vol.14, pp.349-364, 1978.

A. Delarue, Prévision du comportementélectromagnétiquecomportementélectromagnétique de matériaux compositesàposites`positesà partir de leur mode d'´ elaboration et de leur morphologie, Thesis, Paris School of Mines, 2001.

W. T. Elam, A. R. Kerstein, and J. J. Rehr, Critical Properties of the Void Percolation Problem for Spheres, Physical Review Letters, vol.52, issue.17, pp.1516-1519, 1984.
DOI : 10.1103/PhysRevLett.52.1516

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A 241, pp.376-396, 1957.

Z. Hashin and S. Shtrikman, A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials, Journal of Applied Physics, vol.33, issue.10, pp.3125-3131, 1962.
DOI : 10.1063/1.1728579

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, issue.2, pp.127-140, 1963.
DOI : 10.1016/0022-5096(63)90060-7

A. Jean, D. Jeulin, S. Cantournet, S. Forest, V. Mounoury et al., Rubber with carbon black fillers: parameters identification of a multiscale nanostructure model, Proc. Eur. Conf. on Constitutive Models for Rubber ECCMR2007, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00183046

D. Jeulin, Random structure analysis and modelling by Mathematical Morphology, Proc. CMDS5, pp.217-226, 1987.

D. Jeulin, Modèles morphologiques de structures aléatoires et de changement d'´ echelle, Thèse de Doctorat d' ´ Etat, 1991.

D. Jeulin and A. L. Coënt, Morphological modeling of random composites, Proc. CMDS8 Conference, pp.11-16, 1995.

D. Jeulin, Modeling heterogeneous materials by random structures, Invited lecture , European Workshop on Application of Statistics and Probabilities in Wood Mechanics, MM, vol.96, 1996.

D. Jeulin, Bounds of physical properties of some random structure, Proceedings of the CMDS9 Conference, pp.147-154, 1998.

D. Jeulin, Random Structure Models for Homogenization and Fracture Statistics, CISM Lecture Notes N ?, vol.430, pp.33-91, 2001.
DOI : 10.1007/978-3-7091-2780-3_2

D. Jeulin, Space, Structure and Randomness, Contributions in Honor of Georges Matheron in the Fields of Geostatistics, pp.183-222, 2005.

D. Jeulin and M. Moreaud, Multi-scale simulation of random spheres aggregates-Application to nanocomposites, Proc. of the 9th European Congress for Stereology, 2005.

D. Jeulin and M. Moreaud, Percolation d'agrégats multi-´ echelles de sphères et de fibres : Application aux nanocomposites, pp.13-17, 2006.

D. Jeulin and M. Moreaud, Statistical representative volume element for predicting the dielectric permittivity of random media, Proc. CMDS 11, pp.429-436, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00834780

D. Jeulin, Morphological models of random structures

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.3647-3679, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

T. Kanit, F. N-'guyen, S. Forest, D. Jeulin, M. Reed et al., Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.33-36, pp.195-3960, 2006.
DOI : 10.1016/j.cma.2005.07.022

URL : https://hal.archives-ouvertes.fr/hal-00139164

E. Kröner, Statistical Continuum Mechanics, 1971.
DOI : 10.1007/978-3-7091-2862-6

R. A. Lebensohn, Y. Liu, and P. , On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations, Acta Materialia, vol.52, issue.18, pp.5347-5361, 2004.
DOI : 10.1016/j.actamat.2004.07.040

G. Matheron, Eléments pour une théorie des milieux poreux, 1967.

G. Matheron, Composition des perméabilités en milieu poreux hétérogène: critique de la r` egle de pondération géométrique, Rev. IFP, vol.23, pp.201-218, 1968.

G. Matheron, The theory of regionalized variables and its applications, 1971.

G. Matheron, Random sets and integral geometry, 1975.

G. Matheron, Estimating and Choosing, 1989.
DOI : 10.1007/978-3-642-48817-7

J. J. Mccoy, On the deplacement field in an elastic medium with random variations of material properties, Recent Advances in Engineering Sciences, vol.5, pp.235-254, 1970.

J. Michel, H. Moulinec, and P. Suquet, A computational scheme for linear and non???linear composites with arbitrary phase contrast, International Journal for Numerical Methods in Engineering, vol.58, issue.12, pp.139-158, 2001.
DOI : 10.1002/nme.275

G. Milton, Bounds on the elastic and transport properties of two-component composites, Journal of the Mechanics and Physics of Solids, vol.30, issue.3, pp.177-191, 1982.
DOI : 10.1016/0022-5096(82)90022-9

H. Moulinec and P. Suquet, A fast numerical method for computing the linear and nonlinear properties of composites, C. R. Acad. Sci. Paris II, vol.318, pp.1417-1423, 1994.

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2
DOI : 10.1016/S0045-7825(97)00218-1

URL : https://hal.archives-ouvertes.fr/hal-01282728

H. Moulinec and P. Suquet, Intraphase strain heterogeneity in nonlinear composites: a??computational approach, European Journal of Mechanics - A/Solids, vol.22, issue.5, pp.751-770, 2003.
DOI : 10.1016/S0997-7538(03)00079-2

H. Moulinec and P. Suquet, Homogenization for Nonlinear Composites in the Light of Numerical Simulations, Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, pp.193-223, 2004.
DOI : 10.1007/1-4020-2623-4_8

H. Ottavi, J. Clerc, G. Giraud, J. Roussenq, E. Guyon et al., Electrical conductivity of a mixture of conducting and insulating spheres: an application of some percolation concepts, Journal of Physics C: Solid State Physics, vol.11, issue.7, pp.11-1311, 1978.
DOI : 10.1088/0022-3719/11/7/021

I. K?ivka, J. Proke?, E. Tobolková, and J. Stejskal, Application of percolation concepts to electrical conductivity of polyaniline???inorganic salt composites, Journal of Materials Chemistry, vol.9, issue.10, pp.2425-2428, 1999.
DOI : 10.1039/a904687i

M. D. Rintoul and S. Torquato, Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model, Journal of Physics A: Mathematical and General, vol.30, issue.16, pp.585-592, 1997.
DOI : 10.1088/0305-4470/30/16/005

L. Savary, D. Jeulin, and A. Thorel, Morphological analysis of carbonpolymer composite materials from thick sections, Acta Stereologica, vol.18, issue.3, pp.297-303, 1999.

S. Torquato and G. Stell, ???point matrix probability functions for fully penetrable spheres, The Journal of Chemical Physics, vol.79, issue.3, pp.79-1505, 1983.
DOI : 10.1063/1.445941

S. Torquato and F. Lado, Effective properties of two-phase disordered composite media: II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres, Physical Review B, vol.33, issue.9, pp.6428-6434, 1986.
DOI : 10.1103/PhysRevB.33.6428

S. Torquato, Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties, Applied Mechanics Reviews, vol.44, issue.2, pp.37-76, 1991.
DOI : 10.1115/1.3119494

J. R. Willis and J. R. Acton, THE OVERALL ELASTIC MODULI OF A DILUTE SUSPENSION OF SPHERES, The Quarterly Journal of Mechanics and Applied Mathematics, vol.29, issue.2, pp.163-177, 1976.
DOI : 10.1093/qjmam/29.2.163

F. Willot and D. Jeulin, Elastic behavior of composites containing Boolean random sets of inhomogeneities, International Journal of Engineering Science, vol.47, issue.2, pp.313-324, 2009.
DOI : 10.1016/j.ijengsci.2008.09.016

URL : https://hal.archives-ouvertes.fr/hal-00426398