D. Angeli, An Almost Global Notion of Input-to-State Stability, IEEE Transactions on Automatic Control, vol.49, issue.6, pp.866-874, 2004.
DOI : 10.1109/TAC.2004.829594

D. Angeli, Some remarks on density functions for dual Lyapunov methods, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), pp.5080-5082, 2003.
DOI : 10.1109/CDC.2003.1272440

D. Angeli, Open problem: almost Input-to-State Stability, Mathematisches Forschungsinstitut Oberwolfach Report, issue.11, pp.670-671, 2009.
DOI : 10.1109/cdc.2002.1185040

B. Aulbach and T. Wanner, Integral Manifolds for Carath??odory Type Differential Equations in Banach Spaces, Six Lectures on Dynamical Systems Aulbach and F. Colonius. World Scientific, 1996.
DOI : 10.1142/9789812812865_0002

W. M. Boothby, An introduction to differentiable manifolds and Riemannian geometry, 1975.

H. Federer, Geometric Measure Theory, Classics in Math, vol.XVI, 1996.
DOI : 10.1007/978-3-642-62010-2

D. B. Gauld, Topological Properties of Manifolds, The American Mathematical Monthly, vol.81, issue.6, pp.633-636, 1974.
DOI : 10.2307/2319220

S. Prajna, P. Parrilo, and A. Rantzer, Nonlinear Control Synthesis by Convex Optimization, IEEE Transactions on Automatic Control, vol.49, issue.2, pp.310-314, 2004.
DOI : 10.1109/TAC.2003.823000

S. Prajna and A. Rantzer, On Homogeneous Density Functions, Directions in Mathematical Systems Theory and Control, 2003.
DOI : 10.1007/3-540-36106-5_20

A. Rantzer, A dual to Lyapunov's stability theorem, Systems & Control Letters, vol.42, issue.3, pp.161-168, 2001.
DOI : 10.1016/S0167-6911(00)00087-6

A. Rantzer, An converse theorem for density functions, Proceedings of the 41st IEEE Conference on Decision and Control, 2002., pp.1890-1891, 2002.
DOI : 10.1109/CDC.2002.1184801

E. D. Sontag, Input to State Stability: Basic Concepts and Results, Nonlinear and Optimal Control Theory, pp.163-220, 2007.
DOI : 10.1007/978-3-540-77653-6_3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Sontag and Y. Wang, New characterizations of input-to-state stability, IEEE Transactions on Automatic Control, vol.41, issue.9, pp.1283-1294, 1996.
DOI : 10.1109/9.536498

A. R. Teel and L. Praly, A smooth Lyapunov function from a class-${\mathcal{KL}}$ estimate involving two positive semidefinite functions, ESAIM: Control, Optimisation and Calculus of Variations, vol.5, pp.313-367, 2000.
DOI : 10.1051/cocv:2000113

A. Van and . Schaft, L 2 -gain and Passivity Techniques in Nonlinear Control, Communications and Control Engineering Series, 1999.