S. Kim and J. R. Weertman, Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue, Metallurgical Transactions A, vol.25, issue.4, p.999, 1988.
DOI : 10.1007/BF02628384

R. Vasina, P. Lukas, L. Kunz, and V. Sklenicka, INTERACTION OF HIGH CYCLE FATIGUE AND CREEP IN 9%Cr-1%Mo STEEL AT ELEVATED TEMPERATURE, Fatigue & Fracture of Engineering Materials and Structures, vol.931, issue.1, p.27, 1995.
DOI : 10.1016/0921-5093(90)90272-5

F. Abé, S. Nakazawa, H. Araki, and T. Noda, The role of microstructural instability on creep behavior of a martensitic 9Cr-2W steel, Metallurgical Transactions A, vol.72, issue.157, p.469, 1992.
DOI : 10.1007/BF02801164

F. Masuyama, Hardness model for creep-life assessment of high-strength martensitic steels, Materials Science and Engineering: A, vol.510, issue.511, 2009.
DOI : 10.1016/j.msea.2008.04.133

W. Blum, S. Straub, and S. Vogler, High temperature materials and processes, p.31, 1993.

V. Gaffard, Experimental study and modelling of high temperature creep flow and damage behavior of 9Cr1Mo-NbV steels and weldments, Thèse Ecole des Mines de Paris, 2005.

A. Orlova, J. Bursik, K. Kucharova, and V. Sklenicka, Microstructural development during high temperature creep of 9% Cr steel, Materials Science and Engineering: A, vol.245, issue.1, p.39, 1998.
DOI : 10.1016/S0921-5093(97)00708-9

E. Cerri, E. Evangelista, S. Spigarelli, and P. Bianchi, Evolution of microstructure in a modified 9Cr???1Mo steel during short term creep, Materials Science and Engineering: A, vol.245, issue.2, p.285, 1998.
DOI : 10.1016/S0921-5093(97)00717-X

P. Polcik, T. Sailer, W. Blum, S. Straub, J. Bursik et al., On the microstructural development of the tempered martensitic Cr-steel P 91 during long-term creep???a comparison of data, Materials Science and Engineering: A, vol.260, issue.1-2, p.252, 1999.
DOI : 10.1016/S0921-5093(98)00887-9

J. Hald, Materials at high temperature, p.41, 2004.

G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak, Quantification of the Laves phase in advanced 9???12% Cr steels using a standard SEM, Materials Characterization, vol.51, issue.5, p.341, 2003.
DOI : 10.1016/j.matchar.2004.02.003

V. Sklenicka, K. Kucharova, M. Svoboda, L. Kloc, J. Bursik et al., Long-term creep behavior of 9???12%Cr power plant steels, Materials Characterization, vol.51, issue.1, p.35, 2003.
DOI : 10.1016/j.matchar.2003.09.012

H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Materialia, vol.54, issue.5, p.1279, 2006.
DOI : 10.1016/j.actamat.2005.11.001

W. Blum, Communication personnelle, 2009.

F. Abé, Fourth int. conf. on recrystallization and related phenomena, 1999.

J. Li, The interaction of parallel edge dislocations with a simple tilt dislocation wall, Acta Metallurgica, vol.8, issue.5, p.296, 1960.
DOI : 10.1016/0001-6160(60)90115-2

J. Li, Some elastic properties of an edge dislocation wall, Acta Metallurgica, vol.8, issue.8, p.563, 1960.
DOI : 10.1016/0001-6160(60)90111-5

D. Guttmann, Etude du revenu de la martensite dans les aciers faiblement alliés à 2% de manganèse. Influence de l'antimoine. Thèse de l'université d, 1974.

H. Mcqueen, The production and utility of recovered dislocation substructures, Metallurgical Transactions A, vol.2, issue.no. 6, p.807, 1977.
DOI : 10.1007/BF02661562

J. Li, Theory of strengthening by dislocation groupings. Electron Microscopy and strength of metals

B. Fournier, M. Sauzay, C. Caës, M. Mottot, M. Noblecourt et al., Analysis of the hysteresis loops of a martensitic steel, Materials Science and Engineering: A, vol.437, issue.2, p.197, 2006.
DOI : 10.1016/j.msea.2006.08.087

URL : https://hal.archives-ouvertes.fr/hal-00144997

H. Höppel, Z. Zhou, H. Mughrabi, and R. Valiev, Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper, Philosophical Magazine A, vol.1, issue.9, p.1781, 2002.
DOI : 10.2320/matertrans.42.74

B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, and M. Mottot, Analysis of the hysteresis loops of a martensitic steel, Materials Science and Engineering: A, vol.437, issue.2, p.183, 2006.
DOI : 10.1016/j.msea.2006.08.086

URL : https://hal.archives-ouvertes.fr/hal-00144997

M. Yaguchi and Y. Takahashi, A viscoplastic constitutive model incorporating dynamic strain aging effect during cyclic deformation conditions, International Journal of Plasticity, vol.16, issue.3-4, p.241, 2000.
DOI : 10.1016/S0749-6419(99)00053-4

A. Cottrell, Dislocations and Plastic Flow in Crystals, American Journal of Physics, vol.22, issue.4, 1953.
DOI : 10.1119/1.1933704

B. Fournier, Fatigue-fluage des aciers martensitiques à 9-12%Cr : comportement et endommagement
URL : https://hal.archives-ouvertes.fr/tel-00203753

B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot et al., Creep-Fatigue Interactions in a 9??Pct Cr-1 Pct Mo Martensitic Steel: Part I. Mechanical Test Results, Metallurgical and Materials Transactions A, vol.56, issue.401, p.321, 2009.
DOI : 10.1007/s11661-008-9686-z

URL : https://hal.archives-ouvertes.fr/hal-00359183

B. Fournier, M. Sauzay, F. Barcelo, E. Rauch, R. A. Cozzika et al., Creep-Fatigue Interactions in a 9 Pct Cr-1 Pct Mo Martensitic Steel: Part II. Microstructural Evolutions, Metallurgical and Materials Transactions A, vol.51, issue.401, p.330, 2009.
DOI : 10.1007/s11661-008-9687-y

URL : https://hal.archives-ouvertes.fr/hal-00359188

M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi, and K. Kanazawa, Microstructures of creep-fatigued 9???12% Cr ferritic heat-resisting steels, International Journal of Fatigue, vol.28, issue.3, p.300, 2006.
DOI : 10.1016/j.ijfatigue.2005.04.013

W. Read and W. Shockley, Dislocation Models of Crystal Grain Boundaries, Physical Review, vol.78, issue.3, p.275, 1950.
DOI : 10.1103/PhysRev.78.275

A. Sutton and R. Balluffi, Interfaces in crystalline materials, 1995.

D. Differt and U. Essmann, Dynamical model of the wall structure in persistent slip bands of fatigued metals I. Dynamical model of edge dislocation walls, Materials Science and Engineering: A, vol.164, issue.1-2, p.295, 1993.
DOI : 10.1016/0921-5093(93)90681-4

D. Caillard and J. Martin, Microstructure of aluminium during creep at intermediate temperature???I. dislocation networks after creep, Acta Metallurgica, vol.30, issue.2, p.437, 1982.
DOI : 10.1016/0001-6160(82)90224-3

R. Sedlacek and W. Blum, Internal stresses in dislocation subgrain structures, Computational Materials Science, vol.13, issue.1-3, p.148, 1998.
DOI : 10.1016/S0927-0256(98)00055-X

G. Sachs, Zeitschrift der VDI, p.734, 1928.

A. Kosta, K. Tak, R. Hellmig, Y. Estrin, and G. Eggeler, On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels, Acta Materialia, vol.55, issue.2, p.539, 2007.
DOI : 10.1016/j.actamat.2006.08.046

G. Cailletaud, V. Doquet, and A. Pineau, Cyclic multiaxial behaviour of an austenitic stainless steel: microstructural observations and micromechanical modelling. Kussmaul K, McDiarmid D, Socie D, éditeurs. Fatigue under biaxial and multiaxial loading, p.131, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00116756

M. Sauzay, P. Evrard, A. Steckmeyer, and . Ferrié, Physically-based modeling of the cyclic macroscopic behaviour of metals, Procedia Engineering, vol.2, issue.1, p.531, 2010.
DOI : 10.1016/j.proeng.2010.03.057

P. Giroux, F. Dalle, M. Sauzay, C. Caës, B. Fournier et al., Influence of strain rate on P92 microstructural stability during fatigue tests at high temperature, Procedia Engineering, vol.2, issue.1, p.2141, 2010.
DOI : 10.1016/j.proeng.2010.03.230

URL : https://hal.archives-ouvertes.fr/hal-00509939