Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Artificial Neural Network Modeling of Solubilities of 21 Commonly Used Industrial Solid Compounds in Supercritical Carbon Dioxide

Abstract : In this communication, a feed-forward artificial neural network algorithm has been applied to calculate/ predict the solubilities of 21 of the commonly used industrial solid compounds in supercritical carbon dioxide. An optimized three-layer feed-forward neural network using critical properties of solute and operating temperature and pressure is presented. Application of the model for 795 data points of 21 compounds gives a squared correlation coefficient of 0.9533 and an average absolute deviation of about 14% from the experimental values.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00573680
Contributeur : Bibliothèque Mines Paristech <>
Soumis le : vendredi 4 mars 2011 - 11:54:56
Dernière modification le : jeudi 24 septembre 2020 - 17:22:03

Identifiants

Citation

Farhad Gharagheizi, Ali Eslamimanesh, Amir H. Mohammadi, Dominique Richon. Artificial Neural Network Modeling of Solubilities of 21 Commonly Used Industrial Solid Compounds in Supercritical Carbon Dioxide. Industrial and engineering chemistry research, American Chemical Society, 2011, 50, pp.221-226. ⟨10.1021/ie101545g⟩. ⟨hal-00573680⟩

Partager

Métriques

Consultations de la notice

242