Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Use of an artificial neural network algorithm to predict hydrate dissociation conditions for hydrogen+water and hydrogen+tetra-n-butyl ammonium bromide+water systems

Amir H. Mohammadi 1 Veronica Belandria 1 Dominique Richon 1
1 CEP/Fontainebleau
CEP - Centre Énergétique et Procédés
Abstract : In this communication, a feed-forward artificial neural network algorithm is developed to estimate the hydrate dissociation conditions for the hydrogen+water and hydrogen+tetra-n-butyl ammonium bromide+water systems. To develop this algorithm, the experimental data reported in the literature for hydrate dissociation conditions of the latter two systems with different concentrations of tetra-n-butyl ammonium bromide in aqueous phase below its stoichiometric concentration (i.e., ≈0.037 mole fraction or 0.43 mass fraction) have been used. Independent experimental data (not used in training and developing this algorithm) have been employed to examine the reliability of this method. It is shown that the predicted and the experimental data are in acceptable agreement demonstrating the reliability of this algorithm as a predictive tool.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00574061
Contributeur : Bibliothèque Mines Paristech <>
Soumis le : lundi 7 mars 2011 - 10:21:15
Dernière modification le : jeudi 24 septembre 2020 - 17:22:04

Identifiants

Citation

Amir H. Mohammadi, Veronica Belandria, Dominique Richon. Use of an artificial neural network algorithm to predict hydrate dissociation conditions for hydrogen+water and hydrogen+tetra-n-butyl ammonium bromide+water systems. Chemical Engineering Science, Elsevier, 2010, 65 (14), pp.4302-4305. ⟨10.1016/j.ces.2010.04.026⟩. ⟨hal-00574061⟩

Partager

Métriques

Consultations de la notice

153