
HAL Id: hal-00575181
https://minesparis-psl.hal.science/hal-00575181

Submitted on 9 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Flatness-Based Iterative Method for Reference
Trajectory Generation in Constrained NMPC

J.A. de Dona, F. Suryawan, Seron M.M., Jean Lévine

To cite this version:
J.A. de Dona, F. Suryawan, Seron M.M., Jean Lévine. A Flatness-Based Iterative Method for Ref-
erence Trajectory Generation in Constrained NMPC. NONLINEAR MODEL PREDICTIVE CON-
TROL, Springer Verlag, pp.325-333, 2009, �10.1007/978-3-642-01094-1_27�. �hal-00575181�

https://minesparis-psl.hal.science/hal-00575181
https://hal.archives-ouvertes.fr


A flatness-based iterative method for reference

trajectory generation in constrained NMPC
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Abstract : This paper proposes a novel methodology that combines the differ-
ential flatness formalism for trajectory generation of nonlinear systems, and the
use of a model predictive control (MPC) strategy for constraint handling. The
methodology consists of a trajectory generator that generates a reference tra-
jectory parameterised by splines, and with the property that it satisfies perfor-
mance objectives. The reference trajectory is generated iteratively in accordance
with information received from the MPC formulation. This interplay with MPC
guarantees that the trajectory generator receives feedback from present and fu-

ture constraints for real-time trajectory generation.

1 Introduction

Differential flatness [1] is a property of some controlled (linear or nonlinear)
dynamical systems, often encountered in applications, which allows for a com-
plete parameterisation of all system variables (inputs and states) in terms of a
finite number of independent variables, called flat outputs, and a finite number
of their time derivatives. We consider a general system

ẋ(t) = f
(

x(t), u(t)
)

, (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is the input vector. If
the system is flat [1], we can write all trajectories (x(t), u(t)) satisfying the
differential equation in terms of a finite set of variables, known as the flat output,
y(t) ∈ R

m and a finite number of their derivatives:

x(t) = Υ
(

y(t), ẏ(t), ÿ(t), . . . , y(r)(t)
)

,

u(t) = Ψ
(

y(t), ẏ(t), ÿ(t), . . . , y(r+1)(t)
)

.
(2)

The parameterisation (2), afforded by the flatness property, allows to sim-
plify (especially in the case of nonlinear flat systems) the generation of ref-
erence trajectories (trajectory planning). Typically, some ‘desired’ reference
trajectory is prescribed for the flat output, yref , and the corresponding input
and state trajectories for the system are obtained from (2); namely, uref(t) =
Ψ

(

yref(t), ẏref(t), . . . , (yref(t))(r+1)
)

, xref(t) = Υ
(

yref(t), . . . , (yref(t))(r)
)

. How-
ever, a very common requirement in engineering applications is for some of the
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variables of the dynamical system to satisfy a number of constraints, usually
expressed as inequality constraints. For example the input and state of the sys-
tem can be required to satisfy u ∈ U and x ∈ X, where U ⊂ R

m and X ⊂ R
n

are specified constraint sets. The presence of such constraints makes trajectory
generation for nonlinear systems (in general) a highly nontrivial task, due to
the ensuing nonlinearity of the mappings Υ(·) and Φ(·) in (2). (In particular, it
is typically very difficult, to specify constraint sets for the flat output variables
y in terms of the constraint sets for u and x, respectively, U and X.)

In this paper, we propose a novel methodology that exploits the flatness pa-
rameterisation (2) for trajectory generation and the use of the Model Predictive
Control (MPC) strategy for constraints handling. The methodology consists of
a trajectory generator module, that generates a reference trajectory yref(t) with
the property that it satisfies performance objectives (e.g., satisfies given initial

and final conditions, passes through a given set of way-points, etc.). There are
points of contact between some aspects of the approach advocated in this paper
and, for example, the work in [3] where the problem of generation of a reference
trajectory for a nonlinear flat system subject to constraints is formulated as a
NonLinear Programming (NLP) problem. One of the main drawbacks of posing
the problem as a NLP optimisation problem is that, in general, it is very difficult
to prove convergence, or convergence to a global optimum. Hence, in this paper
we explore an alternative algorithm for trajectory generation for nonlinear flat
systems, in the presence of constraints, that is based on the information pro-
vided by a model predictive control (MPC) formulation. The approach is, to
the best of the authors knowledge, the first attempt to combine the differential
flatness formalism with model predictive control techniques in an iterative algo-
rithm for constrained nonlinear trajectory generation. No proofs of convergence
are available at present, due to the challenging nature of these problems, and
this will be of concern in future work. However, simulation results, as the ones
presented in this paper, are promissory and indicate that the effort of developing
such algorithms and investigating formal proofs of convergence is worthwhile.

Thus, in the methodology investigated in this paper, the reference trajec-
tory yref(t) is generated iteratively in accordance with information (predicted in
real time) received from an MPC formulation. That way, the trajectory genera-
tor receives “feedback from the (present and future) constraints” of the system
while generating the desired trajectory. Thus, the proposed method unites
two important properties. Firstly, since the trajectories are generated via the
flatness parameterisation (2), with “feedback from the constraints,” they con-
stitute natural trajectories for the nominal model to follow. And, secondly, the
information generated by an MPC formulation (via the solution of a Quadratic
Programming optimisation, based on the linearised dynamics around the given
reference trajectory) ensures that the system constraints are taken into account.

2 Flatness and trajectory parameterisation

We consider the problem of steering system (1) from an initial state at time t0
to a final state at time tf . Note that, in a Model Predictive Control context, this
fixed interval problem is one window of a bigger scheme, implemented repeatedly
in a receding horizon fashion. In order to generate a suitable reference trajectory,
we will use a spline parameterisation, as explained in the following sections.
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2.1 Parameterisation of flat outputs and their derivatives

We parameterise each of the flat outputs yj(t), j = 1, . . . , m, as

yj(t) =
N

∑

i=1

λi(t)Pij ; t ∈ [t0 , tf ], (3)

where λi, i = 1, . . . , N , is a set of basis functions, which is the same for each flat
output yj . The basis functions are assumed to be λi ∈ C

r+1[t0, tf ], i = 1, . . . , N .
This reduces the problem of characterising a function in an infinite dimensional
space to finding a finite set of parameters Pij . In a discrete set of M+1 sampling
times, t0, t1, . . . , tM = tf , this parameterisation becomes

Yj = G0Pj , (4)

where Yj , [yj(t0), yj(t1), . . . , yj(tf )]T, Pj , [P1j , . . . , PNj ]
T is a vector con-

taining the parameters Pij , i = 1, . . . , N , defined in (3), and

G0 ,







λ1(t0) . . . λN (t0)
...

. . .
...

λ1(tf ) . . . λN (tf )






(5)

is the basis function matrix (also known as blending matrix ). Collecting all the
m flat outputs, we have

Y ,
[

Y1 Y2 . . . Ym

]

=







y1(t0) y2(t0) . . . ym(t0)
...

...
. . .

...
y1(tf ) y2(tf ) . . . ym(tf )







= G0 ·
[

P1 P2 . . . Pm

]

= G0 P = Y (P ),

(6)

where Y is an (M +1)×m output matrix, G0 is the (M +1)×N blending matrix,
and P ,

[

P1 P2 . . . Pm

]

is an N ×m matrix containing the coefficients Pij

of the parameterisation (3). The rows of P are m-dimensional vectors called
control points.

Furthermore, we can also build the time-derivatives of yi at discrete points in
time, by successively differentiating (3) followed by time-discretisation. Doing
this and using the notation as in (6), we obtain

Y (1) = G1P ; Y (2) = G2P ; Y (3) = G3P ; . . . Y (r+1) = Gr+1P ; (7)

where Y (q) , [Y
(q)
1 Y

(q)
2 . . . Y

(q)
m ], and

Y
(q)
j ,









dq

dtq yj(t)
∣

∣

t=t0
...

dq

dtq yj(t)
∣

∣

t=tf









; Gq ,









dq

dtq λ1(t)
∣

∣

t=t0
. . . dq

dtq λN (t)
∣

∣

t=t0
...

. . .
...

dq

dtq λ1(t)
∣

∣

t=tf
. . . dq

dtq λN (t)
∣

∣

t=tf









, (8)

with j = 1, . . . , m and q = 1, . . . , r + 1.
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2.2 Trajectory parameterisation using splines

Given a reference trajectory parameterised as in (6), Y ref = G0P
ref, with spec-

ified reference control points P ref, in this section we will show how to parame-
terise variations around that reference trajectory using splines. In this paper,
clamped B-splines [2] are chosen as basis functions which results in the blending
matrix G0 having a particular structure. Namely, G0 has only one non-zero
element in the first row (which lies in the first column) and only one non-zero
element in the last row (which lies in the last column). The matrix G1 has two
non-zero elements in the first row (which lie in the first and second column)
and two non-zero elements in the last row (which lie in the last and second-last
column). The matrix G2 has a similar property with three non-zero elements,
etc. More properties of B-splines can be found in, e.g., [2].

Notice from (3) that,

dq

dtq
yj(t)

∣

∣

t=t0
=

N
∑

i=1

dq

dtq
λi(t)

∣

∣

t=t0
Pij , (9)

for q = 0, 1, . . . , r + 1; j = 1, . . . , m. We can see from (9) and the structure of
G0 discussed above that yj(t0) = λ1(t0)P1j , j = 1, . . . , m, and hence, by fixing
the first row of P , P1j = P ref

1j , j = 1, . . . , m, the flat outputs at time t0 are
fixed and equal to the corresponding values of the reference trajectory. Fixing
more rows of P (up to the order of the B-spline) fixes the flat output derivatives
at time t0 (e.g. fixing two rows fixes the first derivatives, three rows fixes the
second derivatives, etc.). This property (made possible by the structure of Gq,
q = 0, 1, . . . ) can be used to maintain fixed end-points. For example, prescribed
position and first and second order derivatives of the flat output at times t0 and
tf , as in the rest-to-rest case, can be maintained by holding the ‘external’ control
points (the three topmost and the three bottommost rows of P in Eq. (6)) fixed.
This can be achieved by reparameterising P as:

P = P ref + ρP̂ ; ρ = [0 I 0]T, (10)

where matrix P̂ is an [N−(l1 + l2)]×m matrix that parameterises the deviation
from the ‘internal’ control points of P ref and ρ is an N × [N − (l1 + l2)] matrix
with the l1 top rows set equal to zero, the l2 bottom rows set equal to zero and
the identity matrix of dimension [N − (l1 + l2)]× [N − (l1 + l2)] in the middle.

3 Using MPC to shape the reference trajectory

In this section we will develop an iterative algorithm for trajectory generation
for nonlinear systems, subject to constraints, that is based on information pro-
vided by model predictive control (MPC). The main motivation for resorting
to MPC is to exploit the well-known capabilities for handling constraints of
this control technique. The basic idea is to propose an initial reference trajec-
tory based purely on performance considerations, parameterised as in (6), i.e.
Y ref,0 = G0P

ref,0 (it is assumed here that an initial set of reference control points
P ref,0 is specified), and to then use an MPC formulation to give information as
to how well that trajectory can be followed in the presence of constraints and,
moreover, which parts of the original trajectory are problematic and should be
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modified. Then a new reference trajectory is generated based on a trade-off be-
tween the information obtained from MPC (this information can be regarded as
the feedback from the constraints) and the original performance specifications.
This interplay between performance objectives and MPC (feedback from con-
straints) is then iterated, and the challenge is to devise an algorithm such that
the iteration converges to a suitable reference trajectory.

3.1 MPC formulation

We will assume, for simplicity, that the flat output is given by a (possibly
nonlinear) combination of the states:

y(t) = h
(

x(t)
)

. (11)

Note that, although this is not the most general case for flat systems, many
examples of practical interest satisfy this assumption (e.g., models of cranes,
nonholonomic cars, etc.). Given a specified reference trajectory for the flat out-
put, parameterised by control points P ref as explained in the preceding section:

yref
j (t) =

N
∑

i=1

λi(t)P
ref
ij ; t ∈ [t0, tf ], (12)

for j = 1, . . . , m, we compute the corresponding state and input reference tra-
jectories, xref(t) and uref(t), respectively, from (2). Note, in particular, that the
flatness formulation implies that these trajectories satisfy the system’s equation
ẋref(t) = f

(

xref(t), uref(t)
)

. Then, the dynamics of (1) together with the output

equation (11) are linearised along the reference trajectory
(

uref(t), xref(t), yref(t)
)

as follows: ˙̃x(t) = A(t)x̃(t) + B(t)ũ(t), ỹ(t) = C(t)x̃(t), where:

ũ(t) , u(t)− uref(t), x̃(t) , x(t)− xref(t), ỹ(t) , y(t)− yref(t), (13)

and A(t) =
(

∂f/∂x
)∣

∣

xref(t),uref(t)
, B(t) =

(

∂f/∂u
)∣

∣

xref(t),uref(t)
and C(t) =

(

∂h/∂x
)∣

∣

xref(t)
. The resulting linear time varying system is then discretised

in time, so that the following time varying discrete time system is obtained:

x̃k+1 = Akx̃k + Bkũk, ỹk = Ckx̃k. (14)

In the discretisation (14) we consider a sampling interval Ts , (tf − t0)/M , so
that exactly M sampling intervals fit in the interval of definition of the splines,
[t0, tf ]. Moreover, we define a grid of equally spaced sampling times, tk = t0 +
kTs, k = 0, . . . , M . Note that the variables in (14) (cf. (13)) are measured with
respect to the reference trajectory. Thus we will consider an MPC formulation
for the time varying system (14) where the performance objective is regulation
to the origin (this will ensure tracking of the respective reference trajectories).

Given the current state of the plant at time t, x(t), we compute x̃0 , x(t)−
xref(t0) (where xref(t0) is obtained from (12) using (2)). The aim is to find
the M -move control sequence {ũk} , {ũ0, . . . , ũM−1} that minimises the finite
horizon objective function:

VM ({x̃k}, {ũk}, {ỹk}) ,
1

2
x̃T

MP x̃M +
1

2

M−1
∑

k=0

ỹT
k Qỹk +

1

2

M−1
∑

k=0

ũT
k Rũk, (15)
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subject to the system equations (14) and x̃0 , x(t)−xref(t0), and where P ≥ 0,
Q ≥ 0, R > 0, and M is the prediction horizon. Using the standard vectorised
notation x̃ , [x̃T

1 . . . x̃T
M ]T, ũ , [ũT

0 . . . ũT
M−1]

T, the cost function (15) can be
written in compact form as:

VM =
1

2
x̃T

0 CT
0 QC0x̃0 +

1

2
x̃TQx̃ +

1

2
ũTRũ, (16)

where Q , diag{CT
1 QC1, . . . , C

T
M−1QCM−1, P} and R , diag{R, . . . , R}.

The system’s state evolution from k = 0 to M can be expressed as x̃ =
Γũ + Ωx̃0, where Γ and Ω are formed from the system’s Ak and Bk matrices
(see, e.g., [4]). Substituting this expression for x̃ into (16) yields: VM = V̄ +
1
2 ũ

THũ+ ũTF x̃0, where V̄ is a constant term, H , ΓTQΓ+R and F , ΓTQΩ.
If the problem is constrained, for example with input constraints |u(t)| ≤

umax, then the solution is obtained from the following quadratic program:

ũopt = [(ũopt
0 )T . . . (ũopt

M−1)
T]T , argmin

ũ

1

2
ũTHũ + ũTF x̃0

subject to

|uref + ũ| ≤ Umax,

(17)

where uref , [(uref(t0))
T (uref(t1))

T . . . (uref(tM−1))
T]T, Umax ,

[uT
max . . . uT

max]
T, and the absolute value and the inequality are interpreted

element-wise. (Other types of constraints, e.g., state and output constraints,
can be incorporated in (17) in a straightforward manner.)

The corresponding j-th flat output trajectory, j = 1, . . . , m, obtained by
MPC is computed from the result of (17), using (13) and (14). Using the
expression x̃ = Γũ + Ωx̃0, the MPC flat output trajectory can be expressed as:

Y mpc
j , Cj

[

x̃0

Γũopt + Ωx̃0

]

+ Y ref
j , (18)

where Y mpc
j and Y ref

j are the j-th flat output sequences stacked over time [de-

fined similarly to Yj in (4)], and Cj , diag{C0,j , . . . , CM,j}, where Ck,j is the
j-th row of the time-varying matrix Ck, defined in (14) for k = 0, . . . , M . In an
MPC implementation, one then applies the first control move obtained in (17),
ũopt

0 , and the process is repeated in a receding horizon fashion. However, in our
proposed implementation (see next subsection) this process is iterated before
the actual control input is applied.

3.2 Iterative method for reference trajectory generation

In this section we present the iterative algorithm that is proposed in this pa-
per. The algorithm starts from a set of specified initial control points P ref,0

that parameterise an initial reference trajectory Y ref,0 = G0P
ref,0 which is gen-

erated based on performance considerations, and then it utilises the informa-
tion about the effect of the constraints, provided by the MPC formulation,
to update the reference trajectory through successive sets of control points,
P ref,0, P ref,1, . . . , P ref,k, . . ., etc.

Step 1 Given a set of control points P ref,k ;
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Step 2 Compute, from (6), Y ref,k = G0P
ref,k;

Step 3 Compute Y mpc,k
j from (12)–(18). Note that Y mpc,k so obtained is a (in

general nonlinear) function of P ref,k, that is, Y mpc,k = G
(

P ref,k
)

.

Step 4 Given Y mpc,k, find the variation of the ‘internal’ control points in the
parameterisation (10), denoted P̂mpc,k, that gives a reference trajectory
that is closest in a least-squares sense to Y mpc,k. Namely,

P̂mpc,k
j =

(

(G0 ρ)TG0 ρ
)−1(

G0 ρ
)T(

Y mpc,k
j −G0P

ref,k
j

)

. (19)

Step 5 Update the control points according to: P ref,k+1 = P ref,k + ρP̂mpc,k.

Step 6 While (a weighted 2-norm of) the difference
(

P ref,k+1 − P ref,k
)

is larger
than a prescribed tolerance level and the maximum number of iterations
is not reached: assign P ref,k ← P ref,k+1 and go to Step 1.

Note from Steps 1–5 that the proposed algorithm implements a recursion
P ref,k+1 = F

(

P ref,k
)

, whose complexity depends predominantly on the (in gen-

eral, nonlinear) mapping Y mpc,k = G
(

P ref,k
)

. The convergence properties of the

recursive mapping, P ref,k+1 = F
(

P ref,k
)

, will be investigated in future work.

4 Simulation Example

In this section we will test the previous algorithm on a classical example of a flat
system, a nonholonomic car system. The system is modeled by the equations:
ḋx(t) = u(t) cos θ(t), ḋy(t) = u(t) sin θ(t) and θ̇(t) = (1/l)u(t) tanϕ(t), where
the state dx(t) is the displacement in the “x-direction”, the state dy(t) is the
displacement in the “y-direction”, the state θ(t) is the angle of the car with
respect to the x-axis, the input u(t) is the velocity of the car, the input ϕ(t)
is the angle of the steering wheels, and l is the distance between the front and
the rear wheels. It is straightforward to determine that the flat output for this
system is given by y(t) =

(

dx(t), dy(t)
)

.
A matrix of initial control points, P ref,0, is chosen so that, together with

the parameterisation (12) using cubic B-splines λi(t), gives the initial reference
trajectory yref,0 shown with a dotted line in Figure 1(a). The control inputs are
assumed to be subject to the constraints u(t) ≤ 0.8 and |ϕ| ≤ 0.45. The inputs
corresponding to the initial reference trajectory yref,0 are shown with dotted
lines in Figures 1(c) and (d), far exceeding the constraint limits. The result af-
ter 2, respectively 50, iterations of the algorithm is shown in Figures 1(a), 1(c),
and 1(d) with dashed, respectively solid, lines. Notice that the algorithm pro-
duces a final reference trajectory which is close to the initial reference trajectory
and with associated inputs only mildly exceeding the constraints. In addition,
the initial and final end-point conditions are maintained. A measure of con-
vergence of the algorithm, ηk =

Pm

j=1
(P ref,k

j − P
ref,k-1
j )TGT

0 G0(P
ref,k
j − P

ref,k-1
j ), is

shown in Figure 1(b).

5 Conclusion

A novel methodology combining the differential flatness formalism for trajec-

tory generation of nonlinear systems, and the use of a model predictive control
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Figure 1: Initial reference trajectory, 2nd and 50th iteration. (a) Flat output
y =

(

dx, dy

)

; (b) Measure of convergence ηk; (c) Input u(t); and, (d) Input ϕ(t).

strategy for constraint handling has been proposed. The methodology consists
of a trajectory generator that generates a reference trajectory parameterised by
splines, and with the property that it satisfies performance objectives. The refer-
ence trajectory is generated iteratively in accordance with information received
from the MPC formulation. The performance of the iterative scheme has been
illustrated with a simulation example. Future work will focus on investigating
the conditions required to establish the convergence of the iterative algorithm,
and on evaluating its computational performance for real-time applications.
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