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VI



Flatness Characterization: Two Approaches

Felix Antritter1 and Jean Lévine2
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Abstract. We survey two approaches to flatness necessary and sufficient
conditions and compare them on examples.

1 Introduction

In this survey we consider underdetermined implicit systems of the form

F (x, ẋ) = 0 (1)

with x ∈ X, X being an inifnitely differentiable manifold of dimension
n, whose tangent bundle is denoted by TX, and F : TX → R

n−m

regular in the sense that rk ∂F
∂ẋ

= n−m in a suitable open dense subset
of TX. Differential flatness, or more shortly, flatness was introduced in
1992 [20,11]. In the setting of implicit control systems it may be roughly
described as follows: there exists a smooth mapping x = ϕ(y, ẏ, . . . , y(r))
with y = (y1, . . . , ym)T of dimension m, r = (r1, . . . , rm)T ∈ N

m, such
that

F (ϕ(y, ẏ, . . . , y(r)), ϕ̇(y, ẏ, . . . , y(r+1))) ≡ 0 (2)

with ϕ invertible in the sense that there exists a locally defined smooth
mapping ψ and a multi-index s such that y = ψ(x, ẋ, . . . , x(s)).

The vector y is called a flat output.

This concept has inspired an important literature. See [10,21,19,26,27,31]
for surveys on flatness and its applications. Various formalisms have been
introduced: finite dimensional differential geometric approaches [4,14,30],
[32,28], differential algebra and related approaches [12,3,15], infinite di-
mensional differential geometry of jets and prolongations [13,33,19,6,7,23],
[22,24], which is adopted here. The interested reader may refer to [1,13,16],
[19,23,34] for more details.

The first part of the paper recalls the mathematical setting. In Section 3
the approch introduced in [19,2] for the characterization of differentially
flat systems is recalled. Then, in Section 4, we introduce a novel charac-
terization using the so-called Generalized Euler-Lagrange Operator. We
conclude the paper with examples.
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2 Implicit control systems on manifolds of jets

of infinite order

Given an infinitely differentiable manifold X of dimension n, we denote
its tangent space at x ∈ X by TxX, and its tangent bundle by TX.
Let F be a meromorphic function from TX to R

n−m. We consider an
underdetermined implicit system of the form (1) regular in the sense that
rk ∂F

∂ẋ
= n−m in a suitable open dense subset of TX.

Following [17,18], we consider the infinite dimensional manifold X de-

fined by X
def
= X × R

n
∞

def
= X × R

n × R
n × . . ., made of an infinite (but

countable) number of copies of Rn, with the global infinite set of coor-

dinates3 x =
(

x, ẋ, . . . , x(k), . . . ,
)

, endowed with the product topology.

Recall that, in this topology, a function ϕ from X to R is continuous
(resp. differentiable) if ϕ depends only on a finite (but otherwise arbi-
trary) number of variables and is continuous (resp. differentiable) with
respect to these variables. C∞ or analytic or meromorphic functions
from X to R are then defined as in the usual finite dimensional case since
they only depend on a finite number of variables. We endow X with the
so-called trivial Cartan field ([16,34]) τX =

∑n

i=1

∑

j≥0 x
(j+1)
i

∂

∂x
(j)
i

. We

also denote by LτXγ =
∑n

i=1

∑

j≥0 x
(j+1)
i

∂γ

∂x
(j)
i

= dγ

dt
the Lie derivative

of a differentiable function γ along τX and Lk
τX
γ its kth iterate. Since

d
dt
x
(j)
i

def
= ẋ

(j)
i = x

(j+1)
i , the Cartan field acts on coordinates as a shift to

the right. X is thus called manifold of jets of infinite order.

A regular implicit control system is defined as a triple (X, τX, F ) with
X = X × R

n
∞, τX its associated trivial Cartan field, and F meromorphic

from TX to R
n−m) satisfying rk ∂F

∂ẋ
= n −m in a suitable open subset

of TX.

We next consider the cotangent space T ∗
x̄X with dx

(j)
i , i = 1, . . . , n, j ≥ 0

as basis, dual to the ∂

∂x
(j)
i

´s. 1-forms on X are then defined in the usual

way. The set of 1-forms is noted Λ1(X). We also denote by Λp(X) the
module of all the p-forms on X.

2.1 Flatness

We recall the following definitions and result [17,18,19]:

Given two regular implicit control systems (X, τX, F ), with X = X×R
n
∞,

dimX = n and rk ∂F
∂ẋ

= n − m, and (Y, τY, G), with Y = Y × R
p
∞,

dimY = p, τY its trivial Cartan field, and rk ∂G
∂ẏ

= p−q, we set X0 = {x ∈
X|Lk

τX
F (x) = 0, ∀k ≥ 0} andY0 = {y ∈ Y|Lk

τY
G(y) = 0, ∀k ≥ 0}. They

are endowed with the topologies and differentiable structures induced by
X and Y respectively.

Definition 1 The control systems (X, τX, F ) and (Y, τY, G) are said lo-
cally Lie-Bäcklund equivalent (or shortly L-B equivalent) in a neighbour-
hood X0 × Y0 of the pair (x0, y0) ∈ X0 ×Y0 if and only if

3 From now on, x y, . . . stand for the sequences of jets of infinite order of x, y,. . .
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(i) there exists a one-to-one meromorphic mapping Φ = (ϕ, ϕ̇, . . .) from
Y0 to X0 satisfying Φ(y0) = x0 and such that Φ∗τY = τX;

(ii) there exists Ψ one-to-one and meromorphic from X0 to Y0, with Ψ =
(ψ, ψ̇, . . .), such that Ψ(x0) = y0 and Ψ∗τX = τY.

The mappings Φ and Ψ are called mutually inverse Lie-Bäcklund isomor-
phisms at (x0, y0).

Definition 2 The implicit system (X, τX, F ) is locally flat in a neigh-
borhood of (x0, y0) ∈ X0 × R

m
∞ if and only if it is locally L-B equivalent

around (x0, y0) to the trivial implicit system (Rm
∞, τRm

∞

, 0). In this case,
the mutually inverse L-B isomorphisms Φ and Ψ are called inverse triv-
ializations.

Theorem 1 The system (X, τX, F ) is locally flat at (x0, y0) ∈ X0 × R
m
∞

if and only if there exists a local meromorphic invertible mapping Φ from
R

m
∞ to X0, with meromorphic inverse, satisfying Φ(y0) = x0, and such

that4

Φ
∗
dF = 0. (3)

3 Necessary and Sufficient Conditions:

Generalized Moving Frame Structure Equations

3.1 Algebraic characterization of the differential of a

trivialization

Consider the following matrix, polynomial with respect to the differential
operator d

dt
(we use indifferently d

dt
for LτX or LτRm

∞

, the context being

unambiguous):

P (F ) =
∂F

∂x
+
∂F

∂ẋ

d

dt
, P (ϕ) =

∑

j≥0

∂ϕ

∂y(j)
dj

dtj
(4)

with P (F ) (resp. P (ϕ)) of size (n−m)× n (resp. n×m).

Equation (3)) reads:

Φ
∗
dF = P (F )P (ϕ)dy = 0. (5)

Clearly, the entries of the matrices in (4) are polynomials in the differen-
tial operator d

dt
with meromorphic coefficients from X to R. We denote by

K the field of meromorphic functions from X to R and by K[ d
dt
] the (non-

commutative) principal ideal ring of polynomials in d
dt

with coefficients
in K. For r, s ∈ N, let us denote by Mr,s[

d
dt
] the module of r× s matrices

over K[ d
dt
] (see e.g. [8]). Matrices whose inverse belong to Mr,r[

d
dt
] are

called unimodular matrices . They form a multiplicative group denoted
by Ur[

d
dt
].

4 Note that if Φ is a meromorphic mapping from Y to X, the (backward) image by Φ
of a 1-form is defined in the same way as in the finite dimensional context.
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Every matrix M ∈ Mr,s[
d
dt
] admits a Smith decomposition (or diagonal

reduction)

VMU = (∆, 0r,s−r) if r ≤ s, and

(

∆

0r−s,s

)

if s ≤ r (6)

with V ∈ Ur[
d
dt
] and U ∈ Us[

d
dt
] and ∆ diagonal (see e.g. [8]). U and

V are indeed non unique. We say that U ∈ R− Smith (M) and V ∈
L− Smith (M).

A matrix M ∈ Mr,s[
d
dt
] is said hyper-regular if and only if its Smith

decomposition leads to ∆ = I. An interpretation of this property in
terms of controllability in the sense of [9], may be found in [18].

From now on, we assume that P (F ) is hyper-regular in a neighborhood
of x0. In place of (5), we first solve the matrix equation:

P (F )Θ = 0 (7)

where Θ ∈ Mn,m[ d
dt
] is not supposed to be of the form P (ϕ). It may be

verified that matrices Θ ∈ Mn,m[ d
dt
] satisfying (7) have the structure

Θ = U

(

0n−m,m

Im

)

W (8)

with U ∈ R− Smith (P (F )) andW ∈ Um[ d
dt
] arbitrary. Clearly Θ is itself

hyper-regular and admits the Smith decomposition

QΘZ = QU

(

0n−m,m

Im

)

WZ = QÛR =

(

Im
0n−m,m

)

(9)

with Q ∈ Un[
d
dt
], Z ∈ Um[ d

dt
], R =WZ and Û = U

(

0n−m,m

Im

)

.

3.2 Integrability

We denote by ω the m-dimensional vector 1-form defined by

ω(x) =







ω1(x)
...

ωm(x)






= (Im, 0m,n−m)Q(x)dx∣

∣

X0
(10)

with Q given by (9), the restriction to X0 meaning that x ∈ X0 satisfies

Lk
τX
F = 0 for all k and that the dx

(k)
j are such that dLk

τX
F = 0 in X0

for all k. Since Q is hyper-regular, the forms ω1, . . . , ωm are independent
by construction.

Theorem 2 A necessary and sufficient condition for system (1) to be
locally flat around (x0, y0) is that there exist U ∈ R− Smith (P (F )),

Q ∈ L− Smith

(

Û
)

, with Û given by (9) and a matrix M ∈ Um[ d
dt
] such

that d(Mτ) = 0.
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We denote by (Λp(X))m the space of m-dimensional vector p-forms on X,
by (Λ(X))m the space of m-dimensional vector forms of arbitrary degree
on X, and by Lq ((Λ(X))

m) =
⋃

p≥1 L
(

(Λp(X))m ,
(

Λp+q(X)
)m)

the space

of linear operators from (Λp(X))m to
(

Λp+q(X)
)m

for all p ≥ 1, where
L (P,Q) denotes the set of linear mappings from a given space P to a
given space Q.
In order to develop the expression d(µκ) for µ ∈ Lq ((Λ(X))

m) and for
all κ ∈ (Λp(X))m and all p ≥ 1, we define the operator d by:

d (µ)κ = d(µ κ)− (−1)qµ dκ. (11)

Note that (11) uniquely defines d (µ) as an element of Lq+1 ((Λ(X))
m).

Theorem 3 The system (X, τX, F ) is locally flat iff there locally exists
µ ∈ L1 ((Λ(X))

m), and a matrix M ∈ Um[ d
dt
] such that

dω = µ ω, d (µ) = µ
2
, d (M) = −Mµ. (12)

with the notation µ2 = µµ and where ω is defined by (10). In addition,
if (12) holds true, a flat output y is obtained by integration of dy =Mω.

Remark 1 Note that the two first conditions of (12) are comparable to
conditions (A) and (B) of [6,7]. However, the last condition of (12) is
different from condition (C) of [6,7] and is easier to check.
Note also that conditions (12) may be seen as a generalization in the
framework of manifolds of jets of infinite order of Cartan’s well-known
moving frame structure equations (see e.g. [5]).

3.3 A Sequential Procedure

We start with P (F ) hyper-regular and compute the vector 1-form ω

defined by (10).
1. We identify the operator µ such that dω = µω componentwise. It is

proven in [19] that such µ always exists.
2. Among the possible µ’s, only those satisfying d (µ) = µ2 are kept. It

is shown in [19] that such µ always exists.
3. We then identify M such that d (M) = −Mµ componentwise.
4. If, among such M ’s, there is a unimodular one, the system is flat

and a flat output is obtained by integration of dy =Mω. Otherwise
the system is not flat.

More details and examples may be found in [18,19].

4 Necessary and Sufficient Conditions using the

Generalized Euler-Lagrange Operator

Another way of analysing (3) consists in characterizing the change of
coordinates corresponding to the mapping Φ in (3). More precisely (3)
reads

m
∑

j=1

rj
∑

k=0

(

∂F

∂x

∂ϕ

∂y
(k)
j

dy
(k)
j +

∂F

∂ẋ

d

dt

(

∂ϕ

∂y
(k)
j

)

dy
(k)
j +

∂F

∂ẋ

∂ϕ

∂y
(k)
j

dy
(k+1)
j

)

= 0

(13)
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Since the one forms dy1, . . . , dy
(r1)
1 , . . . , dym, . . . , dy

(rm)
m are independent

by assumption, (13) yields, for every j = 1, . . . ,m,



































∂F

∂ẋ

∂ϕ

∂y
(rj)

j

= 0

∂F

∂x

∂ϕ

∂y
(k)
j

+
∂F

∂ẋ

d

dt

(

∂ϕ

∂y
(k)
j

)

+
∂F

∂ẋ

∂ϕ

∂y
(k−1)
j

= 0, ∀k = 1, . . . , rj

∂F

∂x

∂ϕ

∂yj
+
∂F

∂ẋ

d

dt

(

∂ϕ

∂yj

)

= 0

(14)
The Generalized Euler-Lagrange operator EF associated to F is defined
by

EF =
∂F

∂x
− d

dt

(

∂F

∂ẋ

)

(15)

In the case n−m = 1, it is well-known that the curves that extremize the
cost function J =

∫ T

0
F (x, ẋ)dt are those satisfying the Euler-Lagrange

equation EF = 0, which justifies our terminology.
Using (15) and elementary calculus, (14) yields:

Theorem 4 A necessary and sufficient condition for (1) to be difffer-
entially flat is that there exist (r1, . . . , rm) with

∑m

i=1 ri +m ≥ n and a
solution ϕ of the following triangular system of PDEs in an open dense
subset of X











































∂F

∂ẋ

∂ϕ

∂y
(rj)

j

= 0

∂F

∂ẋ

∂ϕ

∂y
(l)
j

=

rj−l−1
∑

k=0

(−1)k+1 d
k

dtk

(

EF
∂ϕ

∂y
(l+k+1)
j

)

, ∀l = 0, . . . , rj − 1

0 =

rj
∑

k=0

(−1)k
dk

dtk

(

EF
∂ϕ

∂y
(k)
j

)

,

(16)
satisfying dϕ1 ∧ . . . ∧ dϕn 6= 0.

Remark 2 If there exists a coordinate transformation ϕ that satisfies
the conditions of Theorem 4 with given r1, . . . , rm, meaning that the sys-
tem is flat, then gj =

∑n

i=1
∂ϕi

∂y
(rj)

j

∂
∂ẋi

, if non zero, defines a ruled direc-

tion [32,25,19].

5 Examples

5.1 An Academic Example: Generalized Moving Frame

Approach

We consider the 3-dimensional system with 2 inputs:

ẋ1 = u1, ẋ2 = u2, ẋ3 = sin

(

u1

u2

)

(17)
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or, in implicit form:

F (x1, x2, x3, ẋ1, ẋ2, ẋ3) , ẋ3 − sin

(

ẋ1

ẋ2

)

= 0. (18)

It is readily seen that P (F ) =
[

− cos( ẋ1
ẋ2

)ẋ−1
2

d
dt
ẋ1 cos(

ẋ1
ẋ2

)ẋ−2
2

d
dt

d
dt

]

and that V P (F )U = (1 0 0) with

V = 1, U =









ẋ1
aẋ2

1 + ẋ1
a(ẋ2)2

cos
(

ẋ1
ẋ2

)

d
dt

ẋ1
aẋ2

d
dt

1
a

1
aẋ2

cos
(

ẋ1
ẋ2

)

d
dt

− 1
a

d
dt

0 0 1









(19)

where a = − 1
ẋ2

cos
(

ẋ1
ẋ2

)(

ẍ1ẋ2−ẋ1ẍ2
(ẋ2)2

)

. Then, QÛR =





1 0
0 1
0 0



 is com-

puted with

Q =







1 − ẋ1
ẋ2

0

0 0 1

− 1
aẋ2

cos
(

ẋ1
ẋ2

)

d
dt

ẋ1
a(ẋ2)2

cos
(

ẋ1
ẋ2

)

d
dt

1
a

d
dt






, R =

(

1 0
0 1

)

(20)

So, (ω1 ω2)
T =

(

1 0 0
0 0 1

)

Qdx =
(

dx1 − ẋ1
ẋ2
dx2 dx3

)T

and

dω =

(

1√
1−(ẋ3)2

dx2 ∧ dx3 0

)T

. According to section 3.3, step 1,

µ =





0

(

− ẋ3

(1−(ẋ3)2)
3
2
dx2 ∧ dẋ3 + ηdẋ3

)

∧ d
dt

0 0



 . (21)

Step 2 yields η = x2ẋ3

(1−ẋ3)
3
2
+ σ(ẋ3). For step 3 we set M =

(

1 m12
d
dt

0 1

)

which yields m12 = −
(

x2√
1−(ẋ3)2

+ σ1(ẋ3)

)

with σ1 a primitive of σ.

Thus, d(Mω) = 0 and setting (dy1 dy2)
T =Mω, one obtains

y1 = x1 −
ẋ1

ẋ2
x2 + σ2(ẋ3), y2 = x3 (22)

where σ2(ẋ3) is an arbitrary meromorphic function (a primitive of σ1).
By inversion of (22) we get

x1 = y1 − arcsin(ẏ2)

√

1− (ẏ2)2

ÿ2
(ẏ1 − σ1(ẏ2)ÿ2)− σ2(ẏ2)

x2 = −
√

1− (ẏ2)2

ÿ2
(ẏ1 − σ1(ẏ2)ÿ2) (23)

x3 = y2
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5.2 Academic Example: Euler-Lagrange Operator

We consider once more the example (18). We have

∂F

∂ẋ
=

(

−ẋ−1
2 cos

(

ẋ1

ẋ2

)

, ẋ1ẋ
−2
2 cos

(

ẋ1

ẋ2

)

, 1

)

, EF = (η1, η2, 0) (24)

with η1 = − ẍ2

ẋ2
2
cos
(

ẋ1
ẋ2

)

− ẍ1ẋ2−ẋ1ẍ2

ẋ3
2

sin
(

ẋ1
ẋ2

)

and

η2 = − ẍ1ẋ2−2ẋ1ẍ2

ẋ3
2

cos
(

ẋ1
ẋ2

)

+ ẋ1(ẍ1ẋ2−ẋ1ẍ2)

ẋ4
2

sin
(

ẋ1
ẋ2

)

.

The first two equations of (16), with r1 = r2 = 2, read

− 1

ẋ2
cos

(

ẋ1

ẋ2

)(

∂ϕ1

∂ẏj
− ẋ1

ẋ2

∂ϕ2

∂ẏj

)

+
∂ϕ3

∂ẏj
= 0, j = 1, 2 (25)

If we assume that ∂ϕ3
∂ÿj

= ∂ϕ3
∂ÿj

= 0, j = 1, 2 and introduce the variable

ψ =
ẋ1

ẋ2
(26)

with ∂
∂ÿ
ψ = 0 we obtain from (25)

∂ϕ1

∂ÿj
− ψ

∂ϕ2

∂ÿj
=

∂

∂ÿj
(ϕ1 − ψϕ2) = 0, j = 1, 2

Setting κ(y, ẏ) = ϕ1 − ψϕ2, we get

κ̇ = ϕ̇1 − ψϕ̇2 − ψ̇ϕ2 = −ψ̇ϕ2 (27)

Using the definition of κ and (27) we obtain:

ϕ1 = κ− κ̇
√
1− ϕ̇3

ϕ̈3
arcsin(ϕ̇3), ϕ2 = − κ̇

ϕ̈3

√

1− ϕ̇3, ϕ3 = ϕ3(y)

(28)
Choosing ϕ3 = y2, κ = y1, we arrive at the invertible transformation

x1 = ϕ1 = y1 −
ẏ1

ÿ2

√

1− ẏ22 arcsin(ẏ2), x2 = ϕ2 = − ẏ1
ÿ2

√

1− ẏ22 ,

with x3 = ϕ3 = y2, which gives the same formula as (23) with σ1 =
σ2 = 0. Hence (y1, y2) is indeed a flat output, which implies that the
remaining equations of (16) are satisfied.

5.3 An Example Proposed by P. Rouchon

Consider the implicit control system

F (x, ẋ) = ẋ1ẋ3 − (ẋ2)
2 = 0. (29)

We thus have ∂F
∂x

= (0 0 0) , ∂F
∂ẋ

= (ẋ3 − 2ẋ2 ẋ1) and

EF =
∂F

∂x
− d

dt

(

∂F

∂ẋ

)

= − d

dt

(

∂F

∂ẋ

)

= (−ẍ3 2ẍ2 − ẍ1) .
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The lowest possible choice of (r1, r2) in Theorem 4 is r1 = r2 = 1.
However, there is no solution of (16) for these values, and we choose
r1 = r2 = 2. The two first equations of (16) read

ϕ̇3
∂ϕ1

∂ÿj
− 2ϕ̇2

∂ϕ2

∂ÿj
+ ϕ̇1

∂ϕ3

∂ÿj
= 0, j = 1, 2 (30)

We divide (30) by ϕ̇3 to obtain

∂ϕ1

∂ÿj
− 2ψ

∂ϕ2

∂ÿj
+ ψ

2 ∂ϕ3

∂ÿj
= 0, j = 1, 2 (31)

where, taking account of the system equation (29),

ψ =
ϕ̇2

ϕ̇3
=

√

ϕ̇1

ϕ̇3
. (32)

If we assume that ψ doesn’t depend on ÿ1 and ÿ2, equation (31) reads
∂

∂ÿj

(

ϕ1 − 2ψϕ2 + ψ2ϕ3

)

= 0, for j = 1, 2. In other words, there exists a

function κ satisfying ∂κ
∂ÿj

= 0 for j = 1, 2, such that

ϕ1 − 2ψϕ2 + ψ
2
ϕ3 = κ (33)

Differentiating the latter relation with respect to t, and taking into ac-
count the relation ϕ̇1 − 2ψϕ̇2 + ψ2ϕ̇3 = 0 obtained from (29) and (32),
we get

ϕ2 − ψϕ3 = − κ̇

2ψ̇
. (34)

We again differentiate the latter relation with respect to t to obtain

ϕ3 =
κ̈ψ̇ − κ̇ψ̈

2ψ̇3
(35)

thanks to ϕ̇2 − ψϕ̇3 = 0 from (32). Thus, solving the system (33)–(35),
we immediately obtain

ϕ1 = κ− ψ
κ̇

ψ̇
+ ψ

2

(

κ̈ψ̇ − κ̇ψ̈

2ψ̇3

)

ϕ2 = − κ̇

2ψ̇
+ ψ

(

κ̈ψ̇ − κ̇ψ̈

2ψ̇3

)

ϕ3 =
κ̈ψ̇ − κ̇ψ̈

2ψ̇3

(36)

where κ and ψ are arbitrary functions of y1, y2, ẏ1, ẏ2.
Note that choosing κ = y1 and ψ = y2 yields, after inversion of (36) with
(32):

y1 = x1 − 2x2
ẋ2

ẋ3
+ x3

ẋ1

ẋ3
, y2 =

ẋ2

ẋ3
,

which is similar to the solution obtained by F. Ollivier5.
Similarly, the solution of K. Schlacher and M. Schöberl [29] may be

5 personal communication
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recovered by posing κ = y1 − y2
ẏ1
ẏ2

and ψ = ẏ1
2ẏ2

which, again after
inversion of (36) with (32), yields:

y1 = x1 − x3
ẋ1

ẋ3
, y2 = x2 − x3

ẋ2

ẋ3
.

6 Conclusion

In this survey we presented two dual approaches to flatness necessary
and sufficient conditions, one based on the integration of 1-forms and the
second based on the integration of a set of PDEs involving a generalized
Euler-Lagrange operator. Their complexity is compared on examples.
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lement Plats”, N. 20146UH and DAAD N. 50018800 “Implementierung
notwendiger und hinreichender Kriterien für differentielle Flacheit mit-
tels Computer Algebra”.

References

1. R. L. Anderson and N. H. Ibragimov. Lie-Bäcklund Transformations
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