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Abstract— This paper adresses the high precision positioning
issue of permanent magnet (PM) linear motors, in presence
of spatially periodic forces, also known as cogging. Usingrna
internal model representation of this perturbation, an observer-
based controller only relying on position measurements is
derived. The observation error is not autonomous, and the
stability analysis of the resulting closed loop system is garded
as the stability of two interconnected systems. For the motao
quickly track a desired trajectory, while being robust to large
magnitude cogging forces, a small-gain like theorem is dered
and used to tune the gains of the control law in an explicit
way. The experimental results obtained through this method
are then showed and compared with those of a PID controller.
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or [3] for in depth reviews. Roughly speaking, even if not
fed with electrical currents, these motors have a tendency
to stabilize at specific positions so as to minimize magnetic
energy.

This paper is concerned with getting PM synchronous
motors to track reference trajectories with stringent eacy
specifications, related to the aforementioned application
spite of the cogging forces. These trajectories can be of any
kind, meaning this paper is not limited to constant velocity
motion along which these spatially periodic forces would
readily come down to temporally periodic perturbations.
Position measurements are assumed to be available, while
the actual speed of the motor is not measured. The spatial
periods of the cogging are known.

This paper is concerned with motors used in high-end Great efforts have been made to minimize this, though

applications, such as wafer steppers central to the litiqgyr

natural, limitation of the ironcore motors from a technelog

process. These machines are expected to carry loads aldeg point of view. The underlying idea consists in using

point-to-point trajectories with stringent positioningcarracy

the free design parameters, like the shapes of the magnets,

requirements, usually ranging from a micron to a few dozerthe spacing in between slots, or the length of the rotor
nanometers. Given this constraint, direct drive solutionto analytically or numerically find out which configuration
are chosen to actuate these machines. They are actualbtually minimizes cogging forces. All these techniques-ge
capable of providing the sufficient precision levels and therally lead to very complex designs, such as skewed magnets
required smoothness of motion by getting rid of undesirablayouts, which, in the end, do not manage to completely
phenomena such as hysteresis, backlash or mechanical pgst rid of cogging forces (see [4]). The same conclusion
In the following, we focus on the use of PM synchronougpplies to ironless motors, but, for the motors considered
motors. They are preferred to DC motors for their longer lifdhereafter, the main spatially perdiodic perturbationschre
time, improved cleanliness of operation and better rasigta to unavoidable and slowly time-varying electrical current
to wear and tear. offsets rather than cogging. For the sake of simplicity, we
Ironless motors feature two magnetic tracks, made up shall also consider these forces as cogging forces.
permanent magnets, while ironcore motors feature only oneDriving a production model motor with a PID controller
magnetic track. The excess of ferromagnetic material use&titlds satisfactory results for some applications, butemh
for this design allows to trap the magnetic field generated kstringent accuracy specifications are at stake, a dedicated
this only track in the vicinity of the rotor windings. Thisst®  controller is required to get rid of the oscillations arouhd
effective design spares the use of expensive and eventuadlysired trajectory induced by the residual cogging forttes.
superfluous rare earths magnets and yields motors withight be tempting to cancel these forces from a preliminary
better efficiency. However, this design generates pertiafba analytical or numerical analysis together with a feedfadva
forces, hereafter referred to aogging that significantly compensation scheme, but modeling these perturbations tur
affects their performances, in view of the desired accuraayut to be tough, see [4].
requirements. lIronless motors, though much more expensive The previous analysis makes lean towards an online cog-
turn out to be significantly less affected by cogging. ging compensation scheme. For repetitive tasks, the cgggin
Cogging is due to the interaction of the magnetic field witHorces affecting the motion during one run may be identified,
the ferromagnetic material of the rotor. Given the periodiand, directly compensated for during the next run. This
layouts of magnets and slots (see 1), cogging forces aiterative method, known as learning feedforward [5], can
shown to be spatially periodic perturbations, see [1], [2bbviously cope with perturbations of arbitrary shape bik¢$a



several tries to yield satisfactory results.

Other techniques are dedicated to spatially periodic per-
turbations and rely on a spatial Fourier series expansion of
cogging forces. Adaptive controllers may be designed to
estimate both the magnitudes and phases of each of the
Fourier series expansion components and achieve position
tracking thanks to cogging compensation, see [6] and [7]
for instance. Observer-based controllers can also beetbriv.
using an internal model by considering an extended system
made up of the motor dynamics and the perturbations. In
[8], this approach is implemented for mechanical pure sine
perturbations but the extension to higher order harmonics Fig. 1. Two-phase ironcore linear motor.
does not seem straightforward.

The methods reported so far assume the velocity available,
either by direct measurements or numerical differentintio The remaining forces acting on the motor are due to
of the position. For high precision positioning applicagp €ogging and friction. The dynamical behaviour of the motor
assuming the position directly measured is rather sensibéth speeds and measured position= = eventually reads:

and common, but numerical computation of the velocity i "
( > A( y ) + B(u+ A(z) — fsgn(v))
d

may generate undesirable noise affecting the overall syste
performances. In this paper, we propose an observer-base
controller only relying on position measurements. Our solu y = C ( r )
tion steers the tracking error to zero by cancelling cogging v
forces defined by an arbitrary number of spatial periods, aghere the notations are given by:
well as compensating for Coulomb friction. T
This paper is organized as follows. We first model the 4 _ ( 0 1 ) B— ( 0 ) C— ( 1 ) _
dynamics of the motors considered so far and give an 0 —p )’ L)’ 0

analytical definition of thg cogging forces (section I!). ANThe parameterg and f respectively model viscous and dry
observer structure estimating the states of both the mémhangiction, v is the controlled thrust antl(z) models the action
and th_e perturbatio_n is proposed together with a controllgf cogging forces on the acceleration of the motor. Though
fed with these estimated values to allow exact referenggction is modeled by a differential inclusion, in our case
trajectory tracking despite cogging forces (section Mhe 5 simple constant parameter suffices to bring the desired
corresponding gains have to be tuned to achieve perturbatigerformances to the derived observer-based controllereMo
rejection and for the motor to quickly rally the desirede@] ey, for the considered applications, friction is defilyiteot

tory. The stability analysis (section 1V) is mainly based@n the most significant limitation. However, the extension of o
small gain result, pointing out the robustness of the predos ok to differential inclusions could be the scope of furthe
observer-based controller with respect to the magnitude @fsearch activities. From now on, the modeling (1) , togethe

the cogging forces. The performances of the method are th@fyy assuming friction to be a constant unknown parameter,

and ironcore motors (section V).

1)

B. Cogging forces

According to [1], [2], the finite length of the rotor as well
A. Modeling as the windings slots (see figure 1) are some of the design

Fi 1 depi h ) h geli parameters inducing cogging forces. Each of them yields
igure 1 depicts a two-phase ironcore motor (the modeli atially periodic perturbation forces with a specifc pdri

turns out to be the same for ironless motors and three-ph fiich in the case of the finite length of the rotor turns out

windings motors), where permanent magnets, periodical% be g. Current offsets generate cogging-like forces with

spread out along the stator, create a periodic magnefic, <ome spectral components as the back-emf.

f'eld’ Tvﬁ'th stpatlal Pe”Od.P (,j_trappec(ij in fthe trotor out ?f Truncated Fourier series expansion is a rather well-suited
|rhon. c roT(;]r carmes Wlndmgs anc ;\S f.re% 0 .mdo_ve al0N%hol to model thez-periodic functionA(z), made up ofN
the z-axis. The converse design with fixed windings and; o ¢ nciions. as given by:

moving magnetic track might also be conceivable. It is rathe
classical to assume that a current controller stabilizes th N o

dynamics of the electrical currents. They eventually tuih o A(@) = X0+ Y A sin (F T + <Pn> ; 2)

to be fast in comparison with the mechanical behavior of n=1 "

the motor. When using the field-oriented method to drivevhere thea priori unknown\,,’'s andy,,’s bear magnitude

the currents while neglecting their dynamics, a force piopeand phase information of the-th spectral component with
the motor ahead, see [9]. known spatial period®,. This approach copes with cogging

II. PM SYNCHRONOUSMOTORS



forces made up of several fundamental spatial periods, atkl However, note that dry friction is not allowed for in
also with friction through\g. (6), but as a piecewise constant phenomenon, this term is
Adaptive methods mentioned in the introduction mainlymerely estimated along with,. Cautions have to be taken to
cope with the online estimation of the,’s andy,,’s in order  properly reset the observer whenever the sign of the desired
to compensate for\(x). In this paper, an observer-basedvelocity v* changes. From now on, for conveniengejs
method is proposed, and, to this endz) is expressed as ommited in (5), but will still be taken into consideratiorr fo
the output of a dynamical system. For any1 <n < N, the simulation results.
let's note: The second point of interest is the use of the reference
o o velocity v* in (6). The observer scheme (6) can be regarded
Cn,1 = Ap sin (Fn T+ <Pn> s Cn,2 = Ay COS (P_n x+ @n) as a kind of linearization of the perturbation, lower blook i

(5), around the reference trajectary.
and observe:

B. Closed loop dynamics
(Cn 1> o V2—7T ( 0 1> <<n,1> — VM <<n 1> (3) . .. .
G P, \=1 0) \ (oo Cno Our goal is to use this in parallel with a controller to

achieve precise positioning. To this end, observation and

Moreover, let(, = o, with {; = 0, and stacking it positioning errors are denoted by:
up together with the variables,; and ¢, 2 in the vector o L ~ A
¢ € RZN+1 A(z) turns out to be the output of a dynamical r=r-%, v=Uvon ¢=¢-¢,
system, obtained using an internal model representation: Co =TT, & =V—U
. T
00 ... 0 and collected in the vectorg, = (:v v C) and y. =
0:M; O 0 T
. o . (ex &v)
C=v| 10 .o : ¢ = vMn(¢ The following equation concerning the observation error
S _ _ 0 4) s readily derived from (5) subtracted to (6):
0:0 ... 0 My Yo = (A(*) — K€) Xo + Boe, My, 7
A)=(1i{1 0i...01 0)¢:=E€n¢ where the matrixB, reads:
where the matriced/,,’s are defined by (3) an@ stands 0
for null matrices with appropriate dimensions. B, = 0

[1l. OBSERVER AND CONTROLLER DESIGN
with 0 null matrices of relevant dimensions, afgh; the
identity matrix of dimenion2N + 1. Let us move on to
Letx = (z v ()" be the whole state of the plant, and,he controller design from the previous estimated values.
combining (1) together with (4): Provided the vectoC converges to the actual vectdy it

A. Observer structure

) ) is sensible to design the input to compensate for the
x = A@Ww)x+B (u - f3|gn(u)) (5) perturbatiom\ = Cx¢. Additional state feedback through the
y = Cx gain matrixC = (L, L, ) and feedforward terms are added

, . _ to achieve exact trajectory tracking so that the controller
with notations as follows: eventually computes according to:

L T2\ 5 2 X

0 1My 0 o0 In the end, the full state space representation of (5) driven

by the observer-based controller made up of (7) and (8) is
with 0 standing for null matrices with relevant dimensionsgiven by:

Let's note that, obviously, at standstill, the completeesta

¢ is not observable. On top of that, as a perturbatiiis Xe = (4 —:BL) Xe = B Coxo 9)
not controllable but remains bounded according to itsahiti Xo = (A7) =XE€)xo+ e, BLMnC
conditions. whith C, = (0 L, Cy). In (9), the evolution of the
The proposed observer architecture based on the oniycontrollable part¢ of (5) has been ommitted, as we
measurements of the positianis the following: are mainly concerned by the stability of the origin of (9)
= AWT+ Bu+ K€ (x — %) 6) that is equivalent to both observation and positioningrsrro

converging to zero.
To some extent, the proposed expression (6) is similar to Looking at (7), unlike classical Luenberger observers,
a Luenberger observer in that it is clearly a copy of th¢he observation error is not completely autonomous, which
dynamics (5) together with a correction term through gainesults from the linearization ok (z) around the reference



trajectory. Fortunately, as the origin is still an equilitn  z.. Basic requirements concernirig are readily checked,
point of (9) despite the non-controllable pgrtit might not moreover, note that:

be hopeless to look for an appropriate tuning£ofand X T 2 2 T ~T
. . .y « . C = 4 C C’C C»
guaranteeing global asymptotic stability of the origin loé t 'ZC ¥ TN X Xe e TeX
closed loop (9). and computé’ (¢, Xo):
IV. STABILITY ANALYSIS V(Xer Xo) <(¥2 — @)zl 2o + (a2 — ﬁ)chzc
In (9), given the non-autonomous observation error, the (2myn)
observationX and positioningl gains tuning may not be — ac ([Ixell) — aco ([x0ll)
decoupled. We shall assume thats given by some a priori 2 1
. . : Suppos ——— then
knowledge of the plant anf{ is derived using some results UPPOSEY. < a < 4222

on the stability of interconnected systems. In doing so, we . .
. . . ;i < — _

shall derive an interesting result concerning the robisstne Ve(xe) +aVo(xo) < —ae ([Ixell) — aao ([[xol)

of the proposed observer structure versus the magnitude aifd global asymptotic stability is showed provided the suf-

the perturbation. ficient condition2my.v,vn < 1 is met. ]
. ) ) Recalling that the observer is based on the linearization of
A. Small-gain theorem for cogging cancellation the perturbation, this theorem states the intrinsic litiitaof

Let us first have a fresh look at (9), and note that thisur approach. It also shows we are not completely helpless
equation can be viewed as the input-output interconnectidrefore the perturbation, for the gaifisandX play a role in

of: the values taken by, and~,.
Xe = (A—BL)xc+ Buc . L
e = MaCCoxe, (10)  B. Gain tuning issues
As stated by the following theorem, quadratic Lyapunov

with Cc = (0 1) and functions turn out to be an appropriate tool to translate the

Xo = (AW*)—%XC)xo+ Bouo 1 conditions (i) and (ii) of theorem 1 into numerically tralska
2 = CoXos (11) problems where the roles &f andX are clearly identified.
Th 2: dratic stabilizati Letr b i
with v, = —2, and u, = z.. The following small-gain eorem [Quadratic stabilization] Let be a given

theorem, based on dissipativity, gives sufficient condgio positive real numbers, and suppose there exist:
’ patvity, g « two symmetric positive definite matricEBs € R?*? and

for the observer-based cogging cancellation scheme based o P e RCN+3)x(2N+3)

the perturbation linearization to be globally asymptdijca ° '

stable.

Theorem 1: [Small-gain theorem] Suppose the followin
properties are fulfilled:
() There exist a functiofr, : R* — R, such thafi/,(0) = 0

andvz € R? — {0}, V.(z) > 0, a K, functione, and [(A_BL)TPC + PC(A;BL) +CCe+2aF, Pcfg] <0
a scalar, > 0 such thatv (., u.): BT P, -

Ve
(14)
Ve(xe) < 'yfuguc - XZOcTCCXc —ae ([Ixell)
T T
(i) There exist a functior, : R?¥*3 — R, such that {(A_KG) Bo + Po(A=KE) + C; C, + 2aF, POBO} <0

e some gain matrice§ and X,

« two positive scalar,. and~,
ghat satisfy the following relations where the dependarfcy o
A onv* is ommitted:

T 2
V,(0) = 0 and vz € R2V+3 — {0}, V,(2) > 0, a Koo B, P Yol
function«,, and a scalary, > 0 such thatv (x,, u,): - _ . (15).
. ’ then the origin of (9) is globally exponentially stable with
Vo(Xo) < Y2ulue — xTCT Coxto — ao (|IX0l]) decay-rateq if the spatially periodic perturbation satisfies

. ) 21YeYo YN < 1, with ~,, defined by(13).
then the closed loop system is globally asymptoticallylstab Proof: Let Vu(xe) = XL Poxe and Vo (xo) = X% PoXos
: and differentiating these functions along the trajec®ié
(10) and (11) respectively, together with using the Schkurr’

(12) complement of (14) and (15) yields:

d
where the)\,, are the coefficients of the series expangi@) % (XEPexe) < v2ulue = xo OF Cexe = 2ax:Pexe
Proof: First, denote: a
dt
Assuming the small gain conditioQmvy.y,ynv < 1 is

fulfilled, there exists)y? < a < ——— so that :

47‘-270 TN

(XZPOXO) < 72“3“0 - XZCZCOXO — 2axoPoXo

(13)

Let find a scalan > 0 for V =V_.+aV, to be a Lyapunov 4 - r - r
function of the whole system (9) with. = —z, andu, = 7 (Xe Pexe + axo Poxo) < —2a (Xe Pexe + axg PoXo) »



which ends proving global exponential stability with decay| motor  controller Accuracy A P P B

N in pm in mm/s2 in mm
rate «, see for example [10] for further details. [ ]
ironcore PID +10 - - -
C. Controller gains tuning
| ironcore  observer +0.5 =~ 5000 24 16 12

The recommended default PID settings for the motor
yield closed loop eigenvalues that may be computed with ironless PID +0.5 - - -
the modeling (1). When omitting the cogging compensation

feature of equation (8), our controller is an ordinary LTi| "onless —observer | =+0.05 ~3500 | 422l -
controller with gain L. We suggest to tune it to have TABLE |
elgenvalues Wlth Ide_ntlcal real part as Wlth thls PlD Wllho EXPERIMENTAL SETUP AND RESULTS COMPARISON OF THE PROPOSED
cogging compensation, we suggest to tunéo yield poles METHOD WITH A PID CONTROLLER.
with real parts as negative as with the PID controller. If we
rewrite L = (w® 2w — p), it amounts to setting the poles
of the transferH (s):
H(s) s E. Conclusion
S) = V" —F7"7"7"""5-
8% + 28ws + w? The observer-based controller made up of (6) and (8) is

H(s) turns out ot be the transfer from to C.x. in (10). For ~ globally exponentially stable with decay-rate to zerdor
L determined this way, we may also compute the smallest perturbations (2) fulfilling the relation:
fulfilling (14). It turns out to be thdé{., norm of the transfer 1

H(s — a) given by: WS e G- )l

_ _ _ —1
H(s —a) =Ce((s —a)l — A+ BL) " B. with vy given by (13),7} in the theorem 3 andi(s) in
This value is finite, and denoted by provided the poles of subsection IV-C. This is the largest perturbation for which

(16)

H(s) are located on the left of a: the stability of the method is proved, and may be regarded
. as a robustness margin. Computing the numerical value of

Yo =[H(s — o)l - ~x allows to estimate the largest perturbations this corgroll
D. Observer gains tuning may withstand by computing the maximum admissible value

A* of the \,,. This shows the proposed design can cope with

For the previous controller gaif, we propose to compute : . ) )
% in order to minimize the value of,, for which the perturbations hardly conceivable from a physical point of
° view, as illustrated in table I.

condition (15) is met. This problem is not straighforward,
especially becausé(v*(t)) is a time-varying system. How-
ever, since the velocity along the reference trajectory is
boundedVt, v < v*(t) < 7, the system (11) is a polytopic We consider two commercial off-the-shelve PM linear
system, and we are facing an optimization problem undenotors, both an ironcore and an ironless motor. They are
Linear Matrix Inequalitiesconstraints. intended to carry loads, for point to point motion, with
Theorem 3: The minimum valuepf for which there exist respective reference speed trajectories given on figura 2. |
P = PT > 0 andX such that(15)is fulfilled is+*, obtained order to determine the spatial period% of the equation

V. EXPERIMENTAL RESULTS

by solving the following optimization problem: (2), we drive each motor with its recommended default PID
IR . ) controller and perform an FFT transform of the recorded
((%) , P, Q ) = 7, tracking error. These results are plotted in blue dotted lin
Yo, P Q .
on the figures 4 and 3.
subject to: At this point, it is noteworthy that the spectral content of

TP - PT >0 PeRENIHXENS) Fhe cogging forces is much more intricate in the case of the
aN13 ironcore motor than with the ironless one. The latter clearl
JQER features two spatial periods located £&tmm and 21mm,
ATP + PA—-CTQT — Qe+ c’C,+2aP PB, while the ironcore moFor spgctrum is much more chaotic.
[ BTP —721] <0 Nevertheless, the spatial periogl&mnm, 16mm and12mm
? are used to tune the observer. In other words, the assumption

A P+ PA-CTQT —QC+CTC, +2aP PB, about the spatially periodic nature of the cogging forces fo
BT P ° A2 <0 the ironcore motor is not as well fulfilled as for the ironless
° ° one.
where A = A(v) and A = A(P) and the corresponding  We still implement our observer-based controller for both
observer gain matrixk* = (P*)~' Q*. the motors and get the results presented on figure 4 and table

Proof: Since A(v*) is a polytopic system, (15) only |. The cogging forces are completely filtered out (see the
has to be enforced on the verticdsand A of A(v*). See figure 3 for a quantitative illustration), after a short samt
[10] for more details. m for both motors. As expected, this design is efficient during
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Fig. 4. Experimental tracking error jmm, with a PID controller {-) and
the observer-based controllej).(

significantly removes unsatisfactory oscillations arotinel
reference trajectory, which makes the proposed controller
scheme definitely suited for high accuracy applicationshsu
as in the semiconductor industry. Ironcore motors may thus
achieve accuracy usually met with ironless motors, them-
selves reaching upstream performances.
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