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Abstract 

 

A 3D finite element model is presented, addressing some major phenomena arising in arc 

welding as well as their interaction: heat input, metal deposit, solidification, phase 

transformations in the solid state and material behavior. As a result of a simulation, the shape of 

the weld bead, the phase distribution, residual stresses and distortions are obtained. Some 

application and validation cases are discussed. 

 

Introduction 

 

The arc welding process allows assembling parts with or without material deposit. The high 

temperatures reached induce structural transformations in the metal such as solid-liquid or 

metallurgical solid state phase changes. Deformations in the assembly and residual stresses are 

also generated during the welding process. All these phenomena are complex and vary according 

to the process parameters (type of welding process, heat source power, welding velocity, 

clamping, number of pass, etc). The material behavior varies during welding due to the 

temperature evolution and phase transformations. 

Numerical simulation may help in the design and the optimization of welded assemblies. The 

first objectives of the simulation must be: 

• To predict the geometry of the welded assembly, including weld bead shape. 

• To follow the thermal and mechanical evolutions in the weld bead and in the part as well 

as the structural transformations and to evaluate the risks of defects during the process 

and in the final assembly. 

• To predict the final mechanical properties of the assembly, starting from the prediction of 

residual stresses and structural variables. 

Despite an abundant literature on welding numerical simulation (one can refer to the review of 

Runesson et al [ 1]), there is still a real challenge in the numerical modeling of welding processes, 

because of the diversity of the phenomena involved at different time and length scales. This 

paper presents a contribution in that direction, coupling thermal, mechanical and metallurgical 

resolutions in a 3D finite element code. An original method to simulate the metal deposit will be 

also described. 

 

Metallurgical Model 

 

During the welding operation, very high heating rate and cooling rate are obtained in the heat-

affected zone of the parts and in the weld bead. This temperature evolution may induce 
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transformations of the initial phases of the steel in austenite during heating, then in martensite, 

bainite, ferrite and pearlite during cooling. The austenizing in the part during heating is partial or 

total. The volume fraction of austenite gaust is a function of the maximum temperature reached 

and of the heating rate. The austenizing may be described with the following equation: 
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With this simple model, the partial austenizing at temperatures lower than austenizing 

temperature Ac3 is neglected and the austenizing rate is assumed to increase with temperature. 

The simulation of the metallurgical transformation during cooling is based on TTT diagrams [ 2, 

 3], as illustrated in Figure 1. The incubation of ferrite, pearlite and bainite, is represented using 

Scheil parameter. For the growth, a Johnson-Mehl Avrami law [ 4] is used to compute the 

fraction of ferrite, pearlite or bainite transformed. The use of the TTT diagram in the case of a 

non-isothermal transformation is done considering its decomposition into successive isothermal 

transformations. An additivity principle and the notion of fictitious time are used [ 5]. 

 
 

Incubation and growth in the case of an 

isothermal transformation 

Principle of the simulation of a 

non-isothermal transformation 

Figure 1. TTT approach (temperature, time, transformations) 

for modeling solid state transformations. 

 

The martensitic transformation is predicted using the Koistinen-Marburger law [ 6]. The 

martensite volume fraction gmart is a function of the temperature when the temperature is lower 

than the martensite transformation temperature Ms. 
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The metallurgical transformation is coupled with the thermal computation through the 

transformation enthalpy of each phase change (see next section).  

The variation of density between the different phases induces volume changes during allotropic 

transformations. The transformation plasticity is also taken into account to represent the 

abnormal deformation created during the metallurgical transformation under stress [ 7]. In this 

case, the decomposition of the strain rate tensor is generalized with the following equation: 
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in which appear different contributions: e
ε&  for the elastic deformation, p

ε&  for the deviatoric 

plastic deformation and th
ε&  for the volumetric thermal expansion, plus the contributions 

associated with solid state phase changes: tp
ε&  for the deviatoric plastic transformation and tr

ε&  

for the volumetric change. 



Coupling Between Metallurgical and Thermal Resolutions 

 

As expressed above, metallurgical transformations highly depend on temperature history. 

Conversely, the impact of phase transformations (liquid-solid and solid-solid) on heat transfer 

should be considered. Applying the spatial averaging method on an elementary representative 

volume (REV) of the multiphase material, we get [ 8]: 
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where k denotes either the liquid ( lk = ) or one of the possible solid phases ( Nk ,1= ), h the 

specific enthalpy, g the volume fraction and ρ the density. Assuming the temperature uniform in 
the REV, neglecting advection effects and phase density differences, it yields: 
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Denoting 1=k  the primary solid phase, and noticing that 1
,21 =++ ∑ = Ni il ggg ,we get: 
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Denoting now 1hhL l −=  the latent heat of solidification, and LgcTh l

T

T
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final form of the conservation equation is very similar to the one that would be used for an 

enthalpy resolution with a unique solid phase, but it includes an additional right hand side: 
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This right hand side term is a source term composed of the enthalpy changes that are associated 

with each solid state phase change (i-j). It can be noticed that after solidification of the REV, we 

have 1
,1

=∑ = Ni ig . The previous equation becomes then: 
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Regarding implementation, a weak form of this equation is discretized with finite elements. The 

non linear resolution provides the nodal values of h
~
. From these values, the unknown nodal 

values of variables T and gl can be calculated by solving a linear or non linear scalar equation 

(depending on the case: liquid, mushy, solid). This formulation permits then to take into account 

the energy changes associated with the solid state phase changes, while taking advantage of the 

stability and robustness of the enthalpy formulation for the liquid-solid phase change. 

 

Coupling Between Metallurgical and Mechanical Resolutions 

 

In the framework of a velocity-pressure formulation, the weak form of the momentum and mass 

conservation equations can be expressed as follows: 










=∀

=⋅+⋅−⋅−⋅∇−∀

∫

∫∫∫∫∫

Ω

ΩΩΩ∂ΩΩ

0dtr

0d
d

d
dddd:)(

**

******

Vpp

V
t

VSVpV

vp
ε

v
v

vgvTvεvsv

&

& ρρ
 (9) 



where s is the stress deviator, p the pressure, ρ the density, g the gravity, v the velocity field and 
T the external stress vector. The constitutive equations used in solidification problems have been 

presented in previous papers [ 9,  10]. Here it is just reminded that in the liquid and mushy states, 

steels are modeled as Newtonian and non Newtonian fluids, respectively, using a temperature 

dependent viscoplastic model. In the solid state they are modeled using a temperature dependent 

elastic-viscoplastic model. After spatial discretization using finite elements and time 

discretization, this results in a set of non linear equations 0),( =PVRmech , the unknowns of which 

are the velocity components and the pressure value at each node of the finite element mesh. 

While the influence of stress state on solid state phase changes has not been taken into account in 

this work, the reverse coupling has been treated as follows. In the context of a multiphasic solid, 

the variables s and p have been homogenized in a very simple way, as a first approach: the 

velocity field is supposed identical in the different phases. Then the deviatoric stress tensor s and 

the pressure p can be calculated for each phase, using constitutive parameters attached to this 

phase. This step is followed by an averaging of s and p, according to the linear mixing law: 
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Modeling of Material Deposit 

 

First of all, since the calculations are carried out in a Eulerian frame, the whole structure 

including the weld joint must be meshed. For that purpose, at the beginning of the simulation, a 

box, which will contain the final weld joint must be defined and meshed, as shown in Figure 2 

(left). It is important to notice that the shape of the box will not drive the shape of the weld joint. 

Then, a geometrical object, C (a cone for instance) and its kinematics are defined. At each time 

step, elements of the mesh belonging to both the box boundary and the cone define the inlet 

surface for the filler metal. It is assumed here that during the material deposit, there is no 

formation of multiple droplets, but a continuous flow of filler material. Figure 2 (right) illustrates 

the main steps of the weld joint formation. 

 

          

 

         

Figure 2. On the left, the meshes of the plate (in red) and of the box for weld bead 

formation (in blue). On the right, different steps of the weld joint formation. 

 

The flow of the filler liquid metal is solved concurrently with the mechanical problem in the 

assembly. This is done through a VOF-like formulation in the reception box for the weld bead. In 

the elements of this box, a VOF (volume of fluid) function α is considered. Hence the deviatoric 
stress tensor s and the density ρ appearing in (9a) result from the following mixing law: 
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where )(vsmetal  is obtained by a viscoplastic or an elastic-viscoplastic constitutive equation, 

according to the local temperature. The air is considered as a compressible Newtonian medium 

with viscosity 
airµ . Accordingly, a mixture rule is applied to the mass conservation, extending 

equation (9b) to: 
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where 
airχ  is the (high) compressibility modulus in the air surrounding the filler material. 

In order to track the interface between the flow of filler material and the air, an additional 

transport equation is solved for the VOF function α : 
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Figure 3 illustrates a material deposit on a plate without chamfer at different times during the 

process. 

   
a) The source cone has not 

reached the studied section yet 

(in the foreground). 

b) The cone is above the studied 

section: the filler material flows to 

form the weld bead. 

c) The source cone has passed: the 

weld bead is no longer fed. 

Figure 3. Formation of a weld bead on a plate. 
 

Application and Validation: TIG Welding of Steel Plates 

 

Among several application tests, we present here the one issued from the experimental work of 

Depradeux [ 11]. It consists of a TIG welding processed on a thick plate of 316L stainless steel, 

without filler material. Figure 4 shows the geometry and the tetrahedral mesh which is refined (1 

mm) along the welding path, and rather coarse in the rest of the sheet (7 mm). 

 

Figure 4. TIG welding on a thick plate: geometry and finite element mesh. 
 

The aim of the test is to assess the ability of the numerical simulation to predict the transient 

temperature field. As specified in [ 11], the effective heat input is 13 MW/m
2
, and it is assumed 

uniformly distributed in a 5 mm source radius. The welding speed is 1 mm/s. The temperature 

dependent thermophysical properties of the material and the radiative and convective thermal 

exchanges with the environment are taken as specified in [ 11]. However, the thermal 

conductivity is doubled for temperature exceeding the melting temperature, in order to simulate 

the temperature homogenization due to fluid flow in the weld pool [ 12]. Figure 5 and Figure 6 

show the temperature evolution on the upper face of the plate at a lateral distance of 10 mm from 

welding direction 



the weld line and on the lower face at lateral distances 0 mm (just under the line) and 10 mm. 

The results of the numerical model are in excellent agreement with the measurements. 
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Figure 5. On the left: temperature evolution on the upper face of the plate at two locations: 

x = 95 mm, y = 10 mm (calculated and measured [ 11]) and x = 95 mm, y = 0 mm 

(calculated). On the right: temperature distribution on the upper face and vertical section. 
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Figure 6. On the left: measured [ 11] and calculated temperature evolutions on 

the lower face of the plate at two locations (x = 95 mm, y = 0 and 10 mm). On 

the right: temperature distribution on the lower face and vertical section. 

 

The comparison between the calculated weld pool and a picture of the melted zone, from the 

reference [ 11] shows again a very good agreement (Figure 7, left). It validates the heat source 

modeling for the test case with a weld speed of 1 mm/s. However, when taking a lower weld 

speed (0.67 mm/s), it can be seen in Figure 7 right that the weld pool depth is clearly 

underestimated in the numerical simulation, probably because the fluid convection in the weld 

pool is neglected in the present study. It can be thought that at lower weld speed, convection 

effects such as the Marangoni effect can fully develop and modify the transport of energy, and 

consequently the weld pool shape. In this case, a simple modification of the heat conductivity is 

not adequate: the solution consists then in identifying volume heat sources that could mimic such 

effects, or – better – in modeling concurrently the fluid flow in the pool, using a more refined 

finite element mesh which has to be dynamically adapted to follow the electrode trajectory. 



 

 
 

 

 

weld speed 1mm/s temperature [K] weld speed 0.67 mm/s 

Figure 7. Comparison between observed [ 11] and calculated melted zones for two weld speeds. 
 

The 316L steel being entirely austenitic from room temperature to its temperature of fusion, no 

metallurgical transformation occurs in the heat affected zone (HAZ). Therefore, in order to test 

and illustrate the metallurgical-thermal coupling, the same welding test has been simulated, but 

using the data of A508 steel. Austenization and solid state phase change have been considered 

according to the formulation described above. The bainite fraction reaches a maximum value of 

85% and is shown in Figure 8a. The bainitic phase is surrounded in the HAZ by a thin layer of 

ferrite phase as shown in Figure 8d. The parent material of a welded plate outside the HAZ 

consists of the initial pearlite (60%) and ferrite (40%) as shown in Figure 8c and d. 

 

              

a) bainite b) martensite 

                   
c) pearlite d) ferrite 

Figure 8. Calculated volume fractions of the different phases at the end of welding. 
 

Figure 9 (left) shows the minor influence of phase changes on heat transfer by the release or 

transformation heat. In a first approach, a unique value of 76500 J/kg has been used for the 

transformations of austenite into ferrite, pearlite, bainite or martensite. The temperature evolution 

is slightly perturbed during cooling due to the bainitic transformation (110 s < t < 130 s). The 

transient microstructural changes at point (x = 95 mm, y = 0, z = 0) are given in Figure 9b, 

showing the rapid austenite formation (80 s < t < 81 s) and its decomposition, yielding in this 

case a bainitic-ferritic structure. 



 

 

 

Figure 9. On the left: calculated temperature evolution on the upper face of the plate at location 

(x = 95 mm, y = 0). On the right: transient microstructural changes at the same location. 
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