Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Consensus in non-commutative spaces

Abstract : Convergence analysis of consensus algorithms is revisited in the light of the Hilbert distance. The Lyapunov function used in the early analysis by Tsitsiklis is shown to be the Hilbert distance to consensus in log coordinates. Birkhoff theorem, which proves contraction of the Hilbert metric for any positive homogeneous monotone map, provides an early yet general convergence result for consensus algorithms. Because Birkhoff theorem holds in arbitrary cones, we extend consensus algorithms to the cone of positive definite matrices. The proposed generalization finds applications in the convergence analysis of quantum stochastic maps, which are a generalization of stochastic maps to non-commutative probability spaces.
Type de document :
Communication dans un congrès
Liste complète des métadonnées
Contributeur : François Chaplais <>
Soumis le : mardi 15 mars 2011 - 16:15:06
Dernière modification le : jeudi 24 septembre 2020 - 17:04:18

Lien texte intégral



Rodolphe Sepulchre, Alain Sarlette, Pierre Rouchon. Consensus in non-commutative spaces. 49th IEEE Conference on Decision and Control, Dec 2010, Atlanta, United States. pp.6596-6601, ⟨10.1109/CDC.2010.5717072⟩. ⟨hal-00576914⟩



Consultations de la notice