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SOME RESULTS ON ROBUST OUTPUT

FEEDBACK STABILIZATION OF NONLINEAR

SYSTEMS 1

Lorenzo Marconi ∗ Laurent Praly ∗∗

∗ CASY-DEIS Università di Bologna - Italy
∗∗ École des Mines de Paris, Fontainebleau - France.

Abstract: This paper aims at extending the results presented in (Teel and
Praly, 1995) about the design of output feedback stabilizers for systems in normal
form starting from Uniformly Completely Observable (UCO) state feedback
control laws in two main directions: first, we show how output feedback asymptotic

stabilization can be achieved even without requiring local exponential stability
of the state feedback UCO-based loop and without designing an explicit local
nonlinear observer. Second, we show how to design the output feedback stabilizer
starting from an UCO state feedback control law which is not vanishing on the
desired asymptotic attractor which, as a consequence, may be not invariant for the
original controlled system. Key tools in achieving this goal are the ones developed
in (Marconi et al., 2006) in a context strongly inspired by output regulation
problems. Copyright c© 2007 IFAC

Keywords: Output feedback stabilization, robust control, observers, internal
model.

1. INTRODUCTION

The problem of output feedback stabilization in
the large for nonlinear systems has been the sub-
ject of a remarkable research attempt in the last
twenty years or so (see (Isidori, 1999)). The at-
tempt has been initially turned to identify sys-
tematic design procedures for state-feedback sta-
bilization of specific classes of nonlinear systems.
To this respect it is worth mentioning the re-
search current focused on back-stepping design
procedures for lower triangular nonlinear systems
with (Kanellakopoulos et al., 1992) for the global
case and (Teel and Praly, 1995) for the semiglobal
case. Then, the attention of the researchers shifted
to the identification of partial-state and output

1 This work was supported by MIUR. Corresponding

author: Lorenzo Marconi. Tel. +39 051 2093788, Fax. +39

051 2093073, email: lmarconi@deis.unibo.it.

feedback stabilization algorithms mainly addressed
in a semi-global sense due to intrinsic limitations
characterizing this class of problems (see (Mazenc
et al., 1994)). Within the number of research di-
rections undertaken in this field, a special role
has been played by nonlinear separation princi-

ples based on the design of an explicit full state
observer (see (Teel and Praly, 1994)). The main
limitation of this approach is, thought, the lack of
a guaranteed level of robustness of the resulting
controller mainly due to the absence of a well-
established theory of robust nonlinear state ob-
servers. Furthermore, full state observability of
the controlled plant is not, in principle, a neces-
sary condition for output feedback stabilization.
A step forward to overcome these limitations has
been taken in (Teel and Praly, 1995) with the def-
inition of Uniform Completely Observable (UCO)
state-feedback control law, namely a stabilizing
state dependent law which can be expressed as
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nonlinear function of the control input and output
and their time derivatives. In this case the issue
is not to estimate the full-state but rather to
reproduce directly the stabilizing law through the
estimation of the input-output derivatives. This,
in (Teel and Praly, 1995), has been achieved by a
mix of back-stepping and partial-state observation
techniques yielding an output feedback stabilizer
which is robust in the measure in which the UCO
function does not depend on the uncertainties and
the UCO control law is vanishing on the desired
asymptotic attractor. Furthermore the asymptotic

features of the resulting closed-loop system are
subjected to the requirement that the initial state-
feedback UCO-based closed-loop system is locally
exponential stable. Practical stability must be ac-
cepted otherwise (see also (Byrnes et al., 2005)
at this regard). The latter limitation may be
overtaken with the design of a local nonlinear
observer in the spirit of (Teel and Praly, 1994)
by resuming again nonlinear separation principles.
However, so-doing, the same limitations outlined
before come out.

This work frames in the previous UCO context
and aims at removing the main limitations illus-
trated before. More specifically, by means of the
mathematical tools which have been developed
in (Marconi et al., 2006), we show how the de-
sign of a dynamic output feedback control law
which asymptotically stabilizes a compact attrac-
tor can be obtained by starting from a UCO state-
feedback control law which does not necessarily
stabilize in exponential way the desired asymp-
totic attractor and which is not necessarily van-
ishing on it. We will show that these limitations
can be removed by means of design techniques,
developed in the context of output regulation
theory, aiming to robustly get rid of interconnec-
tions terms between nonlinear dynamics arising
in the stability analysis which are not vanishing
on the desired asymptotic attractor and which,
as a consequence, can not be dominated only by
means of high-gain. This will lead to identify a
dynamic back-stepping and an extended partial-
state observer algorithms which embed solution
techniques typical of internal model-based design.

2. BASIC MATHEMATICAL TOOLS

In this section we review the basic tools proposed
in (Marconi et al., 2006) and we present some new
ones instrumental for the scope of this paper.

Consider a smooth nonlinear system described by

ẇ = s(w) w ∈ W ⊂ R
s

ż = f(w, z) z ∈ R
n (1)

in which W is a compact set assumed to be
invariant for ẇ = s(w). As a particular case,

the signals w(t) generated by ẇ = s(w) may be
constant signals, i.e. s(w) ≡ 0, namely constant
parameters taking value in the set W and affecting
the system ż = f(w, z). The first crucial tool is
presented in the next proposition (see Proposition
1 in (Marconi et al., 2006)).

Proposition 2.1. Let B ⊂ R
s × R

n be locally
asymptotically stable for the system (1) with
domain of attraction M×D, D ⊂ R

n. Let q : W ×
R

n 7→ R be a smooth real-valued function and
consider the system

ẋ = Fx + Gq(w, z) x ∈ R
m (2)

with (F,G) ∈ R
m×m × R

m×1 a controllable pair
and F Hurwitz. Then there exists at least one
continuous map τ : R

s+n → R
m solution of the

PDE

L(1)τ(w, z) = Fτ(w, z) + Gq(w, z) (3)

where L(1)τ(w, z) is the Lie derivative at (w, z) of
τ along (1) and the set

graph(τ |
B
) = {(w, z, x) ∈ B × R

m :
x = τ(w, z)}

is locally asymptotically stable for (1),(2) with
domain of attraction M × D × R

m. Furthermore
the set in question is locally exponentially stable
for (1), (2) if B is such for (1).

The second tool is presented in the next lemma
(see Propositions 2 and 3 of (Marconi et al., 2006))
strictly related to the statement of the previous
proposition.

Lemma 2.1. Consider system (1), (2) under the
conditions expressed in Proposition 2.1. Let m ≥
2(s + n) + 2. There exists an ℓ > 0 and a set
S ⊂ C of zero Lebesgue measure such that if 2

σ(F ) ∈ C
−

ℓ \S then for any compact set R ⊂ W ×
R

n there exists a continuous function γ : R
m → R

such that

γ ◦ τ(w, z) + q(w, z) = 0 ∀ (w, z) ∈ R. (4)

Following the proof of Proposition 3 in (Marconi
et al., 2006), it turns out the requirement of choos-
ing F , besides Hurwitz, with a certain stability
margin fixed in the previous proposition by the
positive real number ℓ, represents only a technical
assumption needed to guarantee that the function
τ is C1. In this sense the assumption in question
must be not confused with a “high gain” require-
ment on the choice of F . In other words any choice

2 σ(F ) denotes the spectrum of F while Cℓ := {λ ∈ C :

Reλ < −ℓ}.
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of F such that the associated τ is differentiable
is an appropriate choice. Furthermore note how
the previous lemma only claims the existence of a
continuous γ fulfilling (4). As, in the course of the
paper, we shall need to strengthen the regularity
of the γ satisfying (4), we introduce the following
definition.

Definition. In the framework of Proposition 2.1
and Lemma 2.1, the triplet ((1), q(·),B) is said
to be regular if there exist a suitable choice of a
pair (F,G) and locally Lipschitz functions γ and
τ satisfying the PDE (3) and (4) for some R such
that B ⊂ intR. The triplet is said to be strongly

regular if γ and τ are smooth. ⊳

Remark. Even though the formulation of precise
conditions under which the function γ is more
than continuous is beyond the scope of this paper,
it turns out that a sufficient condition for γ to
be regular is that system (1) with output q(w, z)
is observable in a proper sense. Details in this
direction will be discussed in future works on this
subject.

To the previous results we add a new tool, which
will play a crucial role in the following, formalized
in the next proposition.

Proposition 2.2. Let B ⊂ R
s × R

n be locally
asymptotically stable for the system (1) with
domain of attraction W × D, D ⊂ R

n. For any
compact set R ⊂ R

s+n such that B ⊂ intR, there
exists a compact set Be satisfying B ⊆ Be ⊂ R
which is locally exponentially stable for (1) with
the same domain of attraction W ×D.

Note that, the joint application of Propositions 2.1
and 2.2 and Lemma 2.1 yield that if B is a locally
asymptotically stable set for (1) with domain of
attraction W ×D, then there exists a compact set
Be ⊇ B and continuous functions γ and τ such
that graph(τ |

Be
) is locally exponentially stable

for (1),(2) and γ ◦ τ(w, z) + q(w, z) = 0 for all
(w, z) ∈ graph(τ |

Be
).

3. ROBUST ASYMPTOTIC STABILIZATION
OF COMPACT SETS

In this paragraph we show how the tools presented
in Section 2 lend themselves to be useful to solve
challenging robust output feedback stabilization
problems. The setting considered here is the one
proposed in (Teel and Praly, 1995) in which out-
put feedback stabilizers are designed starting from
UCO state feedback control laws.

Consider the system

ẇ = s(w) w ∈ R
s

ż = A(w, z, u) z ∈ R
n, u ∈ R

y = C(w, z) y ∈ R

(5)

with initial conditions w(0) ∈ W , z(0) ∈ Z,
W ⊂ R

s, Z ⊂ R
n compact sets. As above, we

assume W is an invariant set for the first dynamics
in (5). We recall (see (Teel and Praly, 1995)) that
a function ū is said to be UCO with respect to (5)
if there exist two integers ny, nu and a C1 function
Ψ such that, for each solution of

ẇ = s(w)
ż = A(w, z, u0)

u̇i = ui+1 0 = 1, . . . , nu − 1
u̇nu

= v

(6)

we have, for all t where the solution makes sense,

ū(w(t), z(t)) = Ψ(y(t), y(1)(t), . . . , y(ny)(t),
u0(t), . . . , unu

(t))
(7)

where y(i)(t) denotes the ith derivative of y at
time t. In this framework the following theorem,
which extends in several meaningful directions
Theorem 1.1 of (Teel and Praly, 1995), can be
proved.

Theorem 3.1. Consider system (5) and assume
the existence of a compact set A ∈ R

s+n and of a
function ū(w, z) such that

(a) A is locally asymptotically stable for system
(5) with u = ū(w, z) with domain of attrac-
tion W ×D, Z ⊂ D;

(b) ū(w, z) is UCO with respect to (5).

Then there exist 3 υ > 0, compact sets C, C ⊂ R
υ

and an output feedback controller of the form

ζ̇ = Φ(ζ, y) u = P (ζ, y) , ζ ∈ R
υ (8)

such that A × C is locally asymptotically stable
for the closed-loop system (5)-(8) with a domain
of attraction W ×D′ where Z × C ⊂ D′.

This theorem extends the result presented in The-
orem 1.1 of (Teel and Praly, 1995) in three direc-
tions. First, note that we are dealing with stabi-
lization of compact attractors for systems evolving
on closed sets (as system (5) is as a consequence
of the fact that W is invariant for ẇ = s(w)).
This is a technical improvement on which, though,
we would not like to put the emphasis. Second,
note that the UCO control law ū(w, z) is not
required to be vanishing on the attractor A which,
as a consequence, is not required to be forward
invariant for the open loop system (5) with u ≡

3 modulo a few technical assumptions precisely specified

later.
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0. Finally, the previous theorem claims that by
means of a pure output feedback controller we are
able to restore the asymptotic properties of an
UCO controller without relying upon exponential
stability requirements of the latter and robustly
with respect to uncertain parameters. The last
two extensions are conceptually very much rele-
vant and their validity strongly relies upon the
tools presented in Section 2. Following the main
laying of (Teel and Praly, 1995), the proof of the
claim is divided in two subsections which contain
results interesting on their own.

3.1 Robust asymptotic back-stepping

In this part we discuss how the UCO control law
ū can be robustly back-step through the chain of
integrators of (6). The results in this direction are
meaningful extensions of the analogous results of
(Teel and Praly, 1995) in the measure in which one
considers the fact that ū(w, z) is not vanishing on
the attractor and that A is not necessarily locally
exponential stable for the closed loop system.

Let ℓu ≥ nu be such that, considering the ex-
tended system

ẇ = s(w) ż = A(w, z, u0)
u̇i = ui+1 i = 0, . . . , ℓu − 1

u̇ℓu
= v

(9)

there exist functions Ci such that

y(i) = Ci(w, z, u0, . . . , uℓu
) i = 0, . . . , ny + 1 .

We show that the existence of the static UCO
stabilizer for (5) implies the existence of a dy-
namic stabilizer for (9) using the partial state
ui, i = 0, . . . , ℓu, and the output derivatives y(i),
i = 1, . . . , ny. This is formally proved in the next
theorem in which we need referring to the system

ẇ = s(w) ż = A(w, z, ū(w, z)) (10)

and to the function

q0(w, z) := −
∂ū

∂w
s(w) −

∂ū

∂z
A(w, z, ū(w, z)) .

Theorem 3.2. Assume that the triplet ((10), q0(·),
A) is strongly regular. Then there exist υ > 0,
compact sets X,X ⊂ R

ℓu+υ+1 and a controller of
the form

χ̇ = ϕ(χ, y, y(1), . . . , y(ny), u0, . . . , unu
)

v = ̺(χ, y, y(1), . . . , y(ny), u0, . . . , unu
)

(11)

χ ∈ R
υ, such that system A × X is locally

asymptotically stable for the closed loop system
(9), (11) with domain of attraction W × D′ with
Z × X ⊂ D′.

Proof. By employing the strong regularity of the
triplet ((10), q0(w, z),A), let (F,G) ∈ R

υ×υ ×

R
υ×1, υ > 0, be a controllable pair and γ a smooth

function such that (see Lemma 2.1)

γ ◦ τ(w, z) + q0(w, z) = 0 ∀ (w, z) ∈ R (12)

in which τ satisfies the PDE

L(10)τ(w, z) = Fτ(w, z) + Gq0(w, z)

and R is a compact set such that A ⊂ intR. As
candidate controller choose a system of the form

η̇ = Fη + Gu1 η ∈ R
υ

v = κℓu+1

(

a0(u0 − ū) + a1
u1 − γ(η)

κ
+ . . .

+ aℓu

uℓu
− γ(ℓu−1)(η)

κℓu

)

+ γ(ℓu)(η)

ū = Ψ(y, y(1), . . . , y(ny), u0, . . . , unu
)

(13)

in which ai, i = 1, . . . , ℓu, are arbitrary coefficients
such that the roots of

λℓu+1 + aℓu
λnu + . . . + λa1 + a0 = 0

have negative real part, κ is a design parameter
and γ(i)(η) denotes the i-th time derivative of
the function γ(η), i = 1, . . . , ℓu. Note that there
exist smooth functions γi such that γ(i)(η) =
γi(η, u1, . . . , ui), i = 1, . . . , ℓu. By changing co-
ordinates as

u0 7→ ξ0 = u0 − ū(w, z)

ui 7→ ξi =
ui − γi−1(η, u1, . . . , ui−1)

κi

η 7→ x = η − Gξ0

with i = 1, . . . , ℓu, it turns out that system (9),
(13) with the identity (7), transforms as

ẇ = s(w)

ż = A(w, z, ū(w, z)) + N1(w, z, ξ0)

ẋ = Fx − Gq0(w, z) + N2(w, z, ξ0)

ξ̇ = κHξ + DB(w, z, x) + DN3(w, z, x, ξ0)

(14)

in which ξ = (ξ0, . . . , ξℓu
), H is an Hurwitz

matrix, D = (1 0 . . . 0)T, N1(·), N2(·) and N3(·)
are locally Lipschitz functions vanishing at ξ0 = 0
for all (w, z, x) ∈ R

s×R
n×R

υ, B(w, z, x) = γ(x)+
q0(w, z). Consider now the triangular system

ẇ = s(w) ż = A(w, z, ū(w, z))
ẋ = Fx − Gq0(w, z)

(15)

By assumption the set A is locally asymptotically

stable for the first two dynamics of (15) with
domain of attraction W × D. By Proposition
2.2 there exists a set Ae ⊆ R (with R the
compact set characterizing (12)) which is locally
exponentially stable for the first two dynamics of
(15) with the same domain of attraction W ×
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D. By this Proposition 2.1 guarantees that the
set graph(τ |

Ae
) is locally exponentially stable for

(15) with domain of attraction W × D × R
υ.

Furthermore by (12) it turns out that

B(w, z, x) = 0 ∀ (w, z, x) ∈ graph(τ |
Ae

) .

Hence system (14) fits in the framework of Lemma
A.1 by which it is possible to conclude that for
any compact set X ⊂ R

υ and Ξ ⊂ R
ℓu there

exists a κ⋆ > 0 such that for all κ ≥ κ⋆ the set
graph(τ |

Ae
) × {0} is locally exponentially stable

for (14) with domain of attraction W × D′ with
Z × X × Ξ ⊂ D′. From this, by reasonings based
on (Sontag, 2003) (omitted for reasons of space),
the claim of the theorem follows. ⊳

Remark. It is interesting to note that the role
of the η-dynamics in (13), and specifically of
its output γ(·), is to compensate for the term
q0(w, z), not vanishing on the compact attractor
A ⊂ Ae, which represents a ”junk” between the
(w, z) and the ξ dynamics in (14). Here is where
the tools proposed in Section 2 play a role. In
this sense the relevance of the previous result
is to provide a (robust) dynamic back-stepping
procedure able to get rid of interconnection terms
which are not necessarily vanishing on the desired
asymptotic attractor and, as a consequence, which
can not even be dominated with high-gain.

3.2 The extended Dirty Derivatives Observer

In this part we show how the knowledge of the out-
put derivatives in the UCO law can be substituted
by suitable estimates. As above, the relevance and
novelty of the result with respect to (Teel and
Praly, 1995) rely in the fact the UCO control law
is not necessarily vanishing on the attractor and
it is not expected to locally exponentially stabilize
A.

In particular, motivated by the result presented
in the previous section, given a compact set A ⊂
R

s+n, we assume the existence of positive con-
stants υ, ny, ℓu, with ny ≤ ℓu, of compact sets X,
X ⊂ R

υ+ℓu+1 and of a controller of the form

χ̇ = ϕ(χ, y, y(1), . . . , y(ny), u0, . . . , unu
)

u̇i = ui+1 i = 0, . . . , ℓu − 1

u̇ℓu
= ̺(χ, y, y(1), . . . , y(ny), u0, . . . , unu

)

u = u0

(16)

such that A × X is locally asymptotically stable
for the closed loop system (5)-(16) with a domain
of attraction W ×D where Z ×X ⊂ D. As above
note that there exist smooth functions Ci(·) such
that, along the solutions of the closed loop system
(5), (16), y(i)(t) = Ci(w, z(t), u0(t), . . . , uℓu

(t)) for

all i = 0, . . . , ny+1 and for all t where the solution
makes sense.

Theorem 3.3. Assume that the triplet ((5) −
(16), Cny+1(·),A×X ) is regular. There exist ̟ ≥
υ + ℓu, compact sets C, C ⊂ R

̟ and an output
feedback controller of the form

ζ̇ = Φ(ζ, y) u = P (ζ, y) , ζ ∈ R
̟ (17)

such that A × C is locally asymptotically stable
for the closed loop system (5)-(17) with a domain
of attraction W ×D′ where Z × C ⊂ D′.

Proof. Consider the extended 4 dirty derivatives
observer

˙̂yi = ŷi+1 + Lℓi(y − ŷ0) i = 0, . . . , ny − 1
˙̂yny

= Lny+1ℓny
(y − ŷ0) − γ(η)

η̇ = Fη + G [γ(η) − Lny+1ℓny
(y − ŷ0)]

(18)

with η ∈ R
m, where L > 1 is a design parameter,

ℓi, i = 0, . . . , ny, are such that the roots of

λny+1 + ℓny
λny + . . . + λℓ1 + ℓ0 = 0

have negative real part, and m, (F,G) and γ(·)
have to be chosen. Consider now the output feed-
back controller

χ̇ = ϕs(χ, y, ŷ1, . . . , ŷny
, u0, . . . , uℓu

)
u̇i = ui+1 i = 0, . . . , ℓu − 1

u̇ℓu
= ̺s(χ, y, ŷ1, . . . , ŷny

, u0, . . . , uℓu
)

u = u0

(19)

in which ϕs(p) = ϕ(p) if |ϕ(p)| ≤ s and ϕs(p) = s ·
sgn(ϕ(p)) otherwise, and ̺s(p) = ̺(p) if |̺(p)| ≤ s
and ̺s(p) = s · sgn(̺(p)) otherwise.

Let yd = col(y, y(1), . . . , y(ny)), ŷ = col(ŷ0, ŷ1,

. . . , ŷny
) and consider the change of variables

ŷ 7→ e = DL(yd − ŷ)

DL = diag(Lny , Lny−1, . . . , 1) and η 7→ x = η−
Geny

. In this coordinate setting, by denoting

z = col
(

z u0 . . . uℓu
ξ

)

,

the overall closed-loop system reads in compact
form as

ẇ = s(w)
ż = f(w, z) + ∆(w, z, e)
ẋ = Fx − GCny+1(w, z) + FGeny

ė = LHe + BQ1(w, z, x) + BQ2(x, e)

(20)

in which H is Hurwitz, B =
(

0 . . . 0 1
)T

,
Q1(w, z, x) = Cny+1(w, z) + γ(x), Q2(x, e) =

4 The adjective extended is to emphasize the presence
of the additional dynamic η̇ besides the ”conventional”

estimate dynamics of output derivatives.
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γ(x+Geny
)−γ(x), col(s(w), f(w, z)) is a compact

representation of the vector fields in (5), (16),
∆(w, z, e) = col(0,∆1(·),∆2(·)) with ∆2(·) =
ϕs(·) − ϕ(·) and ∆1(·) = ̺s(·) − ̺(·) and where,
with a mild abuse of notation, we have denoted
Cny+1(w, z) = Cny+1(w, z, u0, . . . , uℓu

). Clearly
Q2(x, 0) = 0 for all x ∈ R

m.

The remarkable feature of this system is that, by
assumption, system

ẇ = s(w) ż = f(w, z) (21)

has a locally asymptotically set A × X with
domain of attraction W × D with Z × X ⊂ D.
In particular, by taking R ⊂ R

s+n+ℓu+̟ an
arbitrary compact set such that A × X ⊂ intR
and R ⊂ W × D, Proposition 2.2 guarantees the
existence of a compact set Be, with A × X ⊆
Be ⊆ R, which is locally exponentially stable for
(21) with domain of attraction W × D. This, by
Proposition 2.1, yields that for the system (21)
augmented with

ẋ = Fx − GCny+1(w, z) (22)

with F Hurwitz , there exists a continuous func-
tion τ : R

s+n+ℓu+̟ → R
m such that the set

graph(τ |
Be

) is locally exponentially stable for
(21)-(22) with domain of attraction W ×D×R

m.
Furthermore, by choosing m ≥ 2(s+n+ℓu+̟)+2,
by employing the regularity assumption of the
triplet ((5) − (16), Cny+1(·),A × X ) and Lemma
2.1, and by fixing (F,G) and a locally Lipschitz γ

so that

Q1(w, z, τ(w, z)) = 0 ∀ (w, z) ∈ R

it turns out that Q1(w, z, x) = 0 ∀ (w, z, x) ∈
graph(τ |

Be
). The rest of the proof follows stan-

dard arguments which are only briefly recalled.
In particular, the amplitude s of the saturated
functions ϕs(·) and ̺s(·) hidden in the definition
of ∆(·) can be tuned so that ∆(w, z, 0) ≡ 0 for all
(w, z) ∈ Be so that the set graph(τ |

Be
) × {0} is

forward invariant for (20) (at this level a proper
Lyapunov characterization of the local exponen-
tial stability of the set Be for (21) is needed).
Furthermore it turns out that system (20) fits
in the framework of Lemma A.1 by which it is
possible to claim the existence of an L⋆ > 0 such
that for any L ≥ L⋆ the set graph(τ |

Be
) × {0} is

locally exponentially stable for (20) with a domain
of attraction W×D′ with Z×X×N×LnyE ⊂ D′.
From this, by reasonings based on (Sontag, 2003)
(omitted for reasons of space), the claim of the
theorem follows. ⊳

Remark. Again, as in the remark at the end of
Section 3.1, note that the role of the η dynamics in

(18), and specifically of its output γ(·), is to com-
pensate for the term Cny+1(w, z), interconnecting
the (w, z) and the e dynamics in (20), which is not
vanishing on Be.

Appendix A. AUXILIARY RESULTS

We present a technical lemma, extension a similar
result in (Teel and Praly, 1995), focused on high-
gain feedback interconnection of systems on closed
sets.

Lemma A.1. Consider the locally Lipschitz sys-
tem

ẇ = s(w) w ∈ W ⊂ R
s

ẋ = f(w, x, y) x ∈ R
n

ẏ = κHy + q(w, x, y) y ∈ R
m

(A.1)

with H Hurwitz, κ > 0 and W a compact set
invariant for ẇ = s(w). For the system given
by the first two dynamics of (A.1) with y = 0
assume the existence of a compact set B ⊂ R

s×R
n

which is locally exponentially stable with domain
of attraction W × D, D open subset of R

n. Let
q(w, x, 0) = 0 for any (w, x) ∈ B. Then for any
compact set X ⊂ D and Y ⊂ R

m and any r > 0,
there exists a κ⋆ > 0 such that for any κ ≥ κ⋆

the set B × {0} is locally exponentially stable for
(A.1) with domain of attraction W × De with
X × Y ⊂ De.
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