Representation and Prediction of Molecular Diffusivity of Nonelectrolyte Organic Compounds in Water at Infinite Dilution Using the Artificial Neural Network-Group Contribution Method - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Chemical and Engineering Data Année : 2011

Representation and Prediction of Molecular Diffusivity of Nonelectrolyte Organic Compounds in Water at Infinite Dilution Using the Artificial Neural Network-Group Contribution Method

(1) , (2) , (3) , (3)
1
2
3
Ali Eslamimanesh
Amir H. Mohammadi
  • Fonction : Auteur correspondant
  • PersonId : 915863

Connectez-vous pour contacter l'auteur
Dominique Richon
  • Fonction : Auteur
  • PersonId : 915941

Résumé

The determination of diffusion coefficients of pure compounds in water at infinite dilution is of utmost interest in chemical and environmental engineering, especially wastewater treatment processes. In this work, the artificial neural network-group contribution (ANN-GC) method is applied to represent and predict the molecular diffusivity of nonelectrolyte organic compounds in water at infinite dilution and 298.15 K. A total of 4852 pure compounds from various chemical families has been investigated to propose a predictive model. The obtained results show the squared correlation coefficient of 0.996, root-mean-square error of about 0.02, and average absolute deviation lower than 1.5 % for the calculated or predicted property from existing experimental values.
Fichier non déposé

Dates et versions

hal-00595545 , version 1 (25-05-2011)

Identifiants

Citer

Farhad Gharagheizi, Ali Eslamimanesh, Amir H. Mohammadi, Dominique Richon. Representation and Prediction of Molecular Diffusivity of Nonelectrolyte Organic Compounds in Water at Infinite Dilution Using the Artificial Neural Network-Group Contribution Method. Journal of Chemical and Engineering Data, 2011, 56 (5), pp.1741-1750. ⟨10.1021/je101190p⟩. ⟨hal-00595545⟩
64 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More