Representation/Prediction of Solubilities of Pure Compounds in Water Using Artificial Neural Network-Group Contribution Method - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Chemical and Engineering Data Année : 2011

Representation/Prediction of Solubilities of Pure Compounds in Water Using Artificial Neural Network-Group Contribution Method

(1) , (2) , (3) , (3)
1
2
3
Ali Eslamimanesh
Amir H. Mohammadi
  • Fonction : Auteur correspondant
  • PersonId : 915863

Connectez-vous pour contacter l'auteur
Dominique Richon
  • Fonction : Auteur
  • PersonId : 915941

Résumé

In this work, the artificial neural network-group contribution (ANN-GC) method has been applied to represent/ predict the solubilities of pure chemical compounds in water over the (293 to 298) K temperature range at atmospheric pressure. A set of 3585 pure compounds from various chemical families has been investigated to propose a comprehensive and predictive method. The obtained results show a squared correlation coefficient (R2) value of 0.96 and a root-mean-square error of 0.4 for the calculated/predicted properties with respect to existing experimental values, demonstrating the reliability of the proposed model.
Fichier non déposé

Dates et versions

hal-00595551 , version 1 (25-05-2011)

Identifiants

Citer

Farhad Gharagheizi, Ali Eslamimanesh, Amir H. Mohammadi, Dominique Richon. Representation/Prediction of Solubilities of Pure Compounds in Water Using Artificial Neural Network-Group Contribution Method. Journal of Chemical and Engineering Data, 2011, 56 (4), pp.720-726. ⟨10.1021/je101061t⟩. ⟨hal-00595551⟩
45 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More