Skip to Main content Skip to Navigation
Conference papers

Coupled thermo mechanical characterisation of polymers based on inverse analyses and IR measurements

Abstract : Heat dissipation during mechanical testing can disturb experimental characterisation of polymers. In this work it is demonstrated that these effects are not limited to extreme loading conditions such as impacts. A visco-hyperelastic, visco-plastic constitutive model is proposed that accounts for thermo mechanical coupling in a fully 3D thermodynamics approach. Strain-rate and temperature dependencies are coupled using a concept close to the well known time-temperature superposition principle. Constitutive and coupling parameters are identified at the same time using an inverse analysis protocol. An experimental data base is generated for mechanical measurements at different temperatures and strain rates but also for temperatures during tests measured using IR technology. Such a protocol allows investigation on the strain-rate sensitivity in a much more relevant manner than classical one and the value of the so-called Taylor-Quinney coupling parameter is discussed.
Document type :
Conference papers
Complete list of metadata

https://hal-mines-paristech.archives-ouvertes.fr/hal-00607243
Contributor : Aurelien Maurel-Pantel Connect in order to contact the contributor
Submitted on : Friday, July 8, 2011 - 11:42:12 AM
Last modification on : Wednesday, December 2, 2020 - 12:20:02 AM

Links full text

Identifiers

Citation

Aurelien Maurel-Pantel, Erwan Baquet, Jérôme Bikard, Noëlle Billon. Coupled thermo mechanical characterisation of polymers based on inverse analyses and IR measurements. 8th International Conference on Advances in Experimental Mechanics: Integrating Simulation and Experimentation for Validation, Sep 2011, Edinburgh, United Kingdom. pp.393-398, ⟨10.4028/www.scientific.net/AMM.70.393⟩. ⟨hal-00607243⟩

Share

Metrics

Record views

381