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Abstract The predictions of the Marrucci and Ian-
niruberto model (2003) have been studied in various

rheometric flows as well as a planar elongation flow us-

ing the ‘optical elongational rheometer’ technique pro-

posed by Schuberth and Münstedt (2008). This combi-

nation of techniques extended the range of pertinence
of the model to high extensional rates. Relevance of the

identified parameters with respect to tube theory was

then discussed.
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1 Introduction

Since the advent of the Doi and Edwards (1986) theory,

tube based constitutive equations for polymer melts

have been increasingly successful in predicting linear

rheometric flows for both monodisperse and polydis-
perse linear entangled melts, together with providing a

clear link between their macromolecular characteristics

and model parameters.

Further constitutive models have then been intro-

duced in order to correct the shortcomings of the initial
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theory, particularly in ‘strong’, nonlinear rheometric
flows such as fast elongational flows (Bach et al. 2003).

These advanced models include, for example (Ianniru-

berto and Marrucci 2001; Likhtman and Graham 2003;

Marrucci and Ianniruberto 2003), chain stretch and con-

vective constraint release.

The pertinence of advanced models to predict com-

plex flows of monodisperse and polydisperse melts has

been studied using various experimental approaches,

coupled with numerical solution procedures. In these
studies, different flow geometries such as contraction,

contraction-expansion slit or cross-slot were investiga-

ted, for moderately ‘strong’ flows, as follows. First an

a priori model parameter identification was performed.

This was peformed using linear and nonlinear (mainly
elongational) rheometry, coupled with a suitable opti-

mization procedure to compute the values of the many

model parameters. Then, 2D or 3D numerical simula-

tions were performed and compared to experimental
measurements using flow-induced birefringence (FIB)

in recent studies (Lee et al. 2001; Collis et al. 2005;

Valette et al. 2006; Hassell et al. 2008; Hassell et al.

2009; Scelsi et al. 2009; Auhl et al. 2011) or both FIB

and laser-Doppler velocimetry (LDV) in earlier ones
(Schoonen et al. 1998; Peters et al. 1999; Agassant et

al. 2002; Verbeeten et al. 2002; Verbeeten et al. 2004;

Gough et al. 2008). Most of the cited studies have shown

that a rather good agreement could be obtained.

However, apart for linear monodisperse melts in re-
cent studies, a theoretically-based link (or missing link)

between polymer melts characteristics and nonlinear

model parameters was not discussed a priori. Moreover,

in the recent studies, which involved the most advanced
constitutive models, only FIB experimental patterns

were compared to computed FIB patterns (Lee et al.

2001; Collis et al. 2005; Valette et al. 2006; Hassell et
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al. 2008; Hassell et al. 2009; Scelsi et al. 2009; Auhl et

al. 2011). Consequently it was not possible to check con-

sistency between measured velocity and resulting FIB

patterns.

In this study, comparison of experimental and com-
puted FIB pattern was proposed using an alternative

approach. In this approach, LDV measurements were

performed to obtain velocity and velocity gradients on

the symmetry axis of a smooth contraction flow and
then used to compute FIB patterns from the tube-

based model of Marrucci and Ianniruberto (2003). This

approach was inspired by the work of Schuberth and

Münstedt (2008), who developped an ‘optical elonga-

tional rheometer’ for polymer fluids of low viscosity,
following earlier studies of Quinzani et al. (1994) and

Quinzani et al. (1995). Prior to this comparison, dy-

namic, capillary and elongational measurements at a

wide range of temperatures and deformation rates were
performed. A preliminary parameter identification is

then proposed and discussed in terms of relevance to

molecular theory. Computed stress field were then com-

pared with the one experimentally measured using FIB.

In order to reduce the discrepancy between experimen-
tal and numerical stress field some nonlinear parame-

ters of the constitutive equation were modified. Consis-

tency between these new parameters and preliminary

rheometrical measurement was finally checked .

2 Polymer and Rheometry

In this paper a commercial grade Polystyrene (StyronTM

648 from the Dow Chemical Company) was used. Molec-
ular characteristics of PS 648 are listed on table 1.

The complex modulus is measured (using a Rheo-

metric Scientific ARES 600) at various temperatures.

The WLF equation (parameters table 2) allows to ob-

tain a master curve for the complex modulus (figure 1)
and for the complex viscosity (figure 2).

Capillary measurements were obtained on a Got-

tfert Rheotester 1000 using several dies (1mm in di-

ameter and various L/D ratios: 10, 20, 30) for Bagley
corrections (Macosko 1994). Weissenberg-Rabinowitsch

corrections (Macosko 1994) allowed to deduce the vis-

cosity as a function of the true shear rate. Capillary

measurements were superimposed with dynamic mea-

surements (see figure 2), which were consistent with
Cox and Merz observations (Macosko 1994). A Newto-

nian plateau is observed at low shear rates, then a clas-

sical power-law decrease of the viscosity, followed by a

change of slope above 500 s−1 which could anticipate a
second Newtonian plateau at higher shear rates.

Elongational viscosity measurements were performed

on a Meissner (1972) RME rheometer at 180oC for elon-

gational rates ranking between 0.16s−1 and 1s−1 (fig-

ure 3). The transient elongational viscosity followed the

linear regime for short times and the lowest rates. For

longer times and higher rates, the elongational viscos-

ity deviated from the linear regime and then reached a
maximum before sample breakage. The plateau just be-

fore breakage could eventually be considered as a ‘sta-

tionary elongational viscosity’ (Bach et al. 2003).

3 Constitutive equation and preliminary

identification

Previous rheometry data were used to fit a set of multi-

mode Marrucci and Ianniruberto model (2003) param-

eters. This tube model, which was originally proposed

in a single mode version, includes several mechanisms

for both tube orientation relaxation such as reptation,
constraint release (Doi and Edwards 1986), convective

constraint release -CCR- (Ianniruberto and Marrucci

1996) and chain stretch relaxation (Doi and Edwards

1986), that occur at different time scales. To overcome
the shortcomings of previous models where orientation

and stretch were decoupled (Ianniruberto and Marrucci

2001; Wapperom et al. 2003), this model was built us-

ing an ‘undecoupled’ (Marrucci and Ianniruberto 2003)

equation for tube conformation tensor C:

Ċ = ∇vC+C∇vT
−

f

Θ
(C−

IC
3
I)−

1

3θr
(fIC − 1) I(1)

where ∇v and I are the velocity gradient and unit ten-

sors, IC the trace of C, Θ and θr the orientation and

stretch relaxation times, and f is the finite extensibility

factor.
Orientation time Θ is defined as:

1

Θ
=

1

θ
+

(

1

θr
−

1

θ

)

β (fIC − 1)

1 + β (fIC − 1)
(2)

where θ is half of the reptation only disengagement time

and β is a numerical CCR parameter of order 1 (Mar-

rucci and Ianniruberto 2003), governing the transition

of Θ from θ (slow flows) to θr (‘strong’ flows).
The finite extensibility factor f is defined as:

f =
b − 1

b− IC
(3)

where b has the meaning of the square of the maximum

stretch ratio. For polystyrene, Dhole et al. (2003) sug-

gested that b = 66, whereas Rolón-Garrido et al. (2006)

proposed a maximum stretch ratio of 5, which implies
b = 25.

Finally the polymeric stress tensor is defined:

τ = 3Gf

(

C−
1

3
I

)

(4)



Evaluation of a tube based constitutive equation using conventional and planar elongation flow optical rheometers 3

where G is the elastic modulus, which is around 2 ×

105Pa for polystyrene (Dhole et al. 2003). For this study

a ‘crude’ multimode extension of the Marrucci and Ian-

niruberto model for polystyrene was investigated. This

model is able to capture qualitatively the main features
which have been experimentally observed in the preced-

ing section: Newtonian plateau, shear thinning effect as

well as nonlinear behaviour in elongation.

A 8 modes relaxation spectrum was first identified

from the dynamic data (figure 1) using the non linear
regression method early proposed by Baumgaertel and

Winter (1989) (table 3).

For each mode, the three non linear parameters, β,

θr and b were then identified. For all set of parameters,

it was found that the stationary shear viscosity curve
was mainly sensitive to the parameter β, as expected

(Ianniruberto and Marrucci 1996). The value b = 66,

as prescribed by Dhole et al. (2009) for each mode was

used as a starting parameter for the identification. Fi-

nally, a simplified form of classical scaling theories (Doi
and Edwards 1986; Likhtman and McLeish 2002) was

used to determine θr:

θri = θe

(

θri
θe

)
2

3

(5)

where θe would correspond to the relaxation time for

a macromolecular chain with only one entanglement.
This relaxation time was choosen of the order of the

inverse frequency corresponding to the end of the rub-

berry plateau (10−5s on figure 1).

Using these three non linear parameters (β = 1,

b = 66, θe = 10−5s) led to a reasonable agreement for
the shear viscosity but not for the uniaxial elongational

viscosity (figure 4). A better fit for stationary shear vis-

cosity was obtained by decreasing the CCR parameter

β to 0.92, strain hardening was obtained by increas-

ing the exponent of equation (5) (2.44
3

instead of 2

3
)

and decreasing the finite extensibility parameter b to

bi = (10, 10, 10, 10, 10, 10, 20, 30) from the fastest to

slowest mode (figure 5). These values are more consis-

tent with the ones prescribed in Rolón-Garrido et al.
(2006). It should be noted however that the more accu-

rate fit was obtained using a non unique value of b for

each mode. It should also be noticed that elongational

results at low strain rates could exhibit measurement
errors (Rolón-Garrido et al. 2006), which would explain

the discrepancy at low elongational rates.

4 Velocity and stress field measurements

We used a single screw extruder Kaufman (screw diam-

eter 40mm) coupled with a servo controlled gear pump

to obtain a constant and controlled flow rate within a

partially transparent die. This die was made of a semi

circular converging geometry (Combeaud et al. 2004).

The reservoir had a square section (14mm×14mm) and

the final slit gap was 1mm thick and 20.75mm long (fig-
ure 6). Transparent Pyrexr glass windows on each side

of the die allowed to analyse carefully the flow field.

A laser doppler Dantec velocity measurement tech-

nology was used. In this study we focused on the veloc-
ity field in the mid plane of the die and on the symmetry

axis. The precision of laser Doppler velocity measure-

ments is higher on the symmetry axis than at the wall,

and typical 1% precision was obtained for each point

after 1 min sampling time (Hertel, 2008). A complete
set (for all investigated flow rates) of velocity and bire-

fringence measurement required a few hours and several

kg of polymer. Figure 7 shows velocity plotted for sev-

eral flow rates ranging from 0.05g/s to 0.7g/s. Velocity
was approximated using a high order polynomial fit and

then elongational rates could be computed as shown on

figure 8. For the largest flow rate, the elongational rate

reached values as high as 18s−1.

The optical set-up for FIB measurements (Robert
et al. 2003; Robert et al. 2004) used a monochromatic

sodium source (wave length λ = 589nm). An initial

polarizer filter, a first 1/4 wave plate, positioned at

45o from the direction of polarization eliminated iso-
clinic fringes interfering with isochromatic fringes. On

the other side of the transparent slit die, a second 1/4

wave plate compensated for modifications in total bire-

fringence produced by the first plate. A final analyser

filter enabled the observation of chromatic birefringence
fringes in the flow field.

The transverse aspect ratio in the reservoir and the

slit were, respectively, 1 and 14. While three-dimensional

effects may arise in low aspect ratio regions (Wales,
1976), it was shown by Clemeur et al. (2004) that these

effects may not have a great impact on the observed

birefringence. Consequently, it is reasonable to consider

that the principal stress difference may be related to the

order k of the isochromatic extinction lines by:

σ1 − σ2 =
kλ

CW
(6)

where C is the stress optical coefficient and W the

die width. On the symmetry axis σ1 = −p + τxx and

σ2 = −p which means that we had directly access to
the polymeric stress component in the flow direction.

The value of C = −4.0 10−9Pa−1 at 180oC was taken

from Han and Drexler (1973) and Macosko (1994). For

the conditions probed, a high number of fringes were
observed, which were in part due to the high value of

the stress optical coefficient (figure 9). Using a dedi-

cated image analysis (which consisted in finding the set
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of local maxima of grey levels) allowed to detect pre-

cisely the position of each isochromatic line, and so the

k value from which we obtained the stress component in

the flow direction (figure 10). According to the stress-

optical law, we observed elongational stress values as
high as 106Pa. However, it was shown by Venerus et

al. (1999) and Luap et al. (2005) that linearity in the

stress optical law failed beyond a certain stress value

around 106Pa (which may vary depending on sample
polydispersity). In Venerus et al. (1999), Luap et al.

(2005) and Rolón-Garrido et al. (2006), departure from

linearity was clearly explained by the role played by

finite extensibility effects: at high elongational rates,

stress increases faster than ‘FIB stress’. Consequently,
for model - experiments comparisons in the following,

we computed ‘corrected FIB stresses’ from the Marrucci

and Ianniruberto model by dropping the finite exten-

sibility term f for each mode in equation 4. We then
used a ‘computed corrected FIB stress’ τ ′ defined as:

τ
′ = 3G

(

C−
1

3
I

)

(7)

5 New identification step

As the proposed convergent flow geometry induced non

uniform and high planar elongational rates, it was used

to test the pertinence of both the constitutive equa-

tion and parameters identified previously. The general
principle of the identification procedure was based on

using the flow field measurements on the symmetry axis

and the computed planar elongational rate as input pa-

rameters in the Marrucci and Ianniruberto constitutive
equation, together with the previously identified linear

and nonlinear viscoelastic parameters.

‘Corrected elongational FIB stress’ distribution on

the axis in the flow direction was then computed using

equation 7 for each investigated flow rate, and com-
pared to the one measured using flow birefringence. On

figure 11 we observed that the agreement was quali-

tatively fair, but the computed corrected FIB stresses

were overestimated at high elongational rates and un-
derestimated at low elongational rates. Origins of the

observed discrepancies could be two fold: first, FIB pat-

terns integrated 3D effects especially in the reservoir,

second, the parameters of the constitutive equation were

identified in slow rheological flow conditions, with con-
stant shear rates and elongational rates, which were dif-

ferent from those presented in figures 7 and 10.

We then revisited the identifying procedure account-

ing for these new field experiments; relaxation spec-
trum were obviously keep constant ; CCR parameter

were slightly increased (0.95 instead of 0.92) ; finite ex-

tensibility coefficient b were modified (smaller values

for the three fastest modes) and θei has been changed

to 5 × 10−4 for the three fastest modes. A line search

method was used to minimize the quadratic distance

between all measured and computed curves. The step

size was restricted to 0.01 for the CCR parameter, 1
to the finite extensibility coefficient b and 0.01 to the

exponent of equation 5. As a result of these changes,

the final agreement for the 12 different flow rates was

much improved especially at high rates (figure 12). The
identified parameters are listed table 4.

The last step consisted in checking that the steady

shear and elongational viscosity curves were still well

predicted using these new parameters, which was found

to be the case (figure 13).

6 Discussion and conclusion

This study was a first attempt to test the validity of

constitutive equations and to identify their non linear

parameters using both conventional and optical rheom-
etry for polymer melts. It was shown that optical elon-

gational rheometry could extend the conventional rheom-

etry measurement window in two ways: it extends the

range of investigated strain rates and it provides ad-

ditional data in non uniform planar elongation. More-
over, it was shown that a simple multimode tube-based

model (Marrucci and Ianniruberto 2003) could predict

most of the experimental resuls using a set of theo-

reticaly addmissible set of parameters, apart for some
finite extensibility parameters that needed to be set to

unrealistically small values.

The next step would be to measure velocity and-

FIB along the flow axis of the downstream channel and

to check the relevance of the constitutive equation in
that domain. In fact, most of the constitutive equa-

tions which give reasonable agreement for stress build

up are less relevant for stress relaxation (Wapperom et

al. 2005).

In a second step the whole velocity and birefringence
fields may be considered. On each streamline, the bal-

ance between elongational and simple shear would be

different and this would represent a more severe test for

the constitutive equations. It would be first necessary

to check the validity of the experiments and especially
the 3D effects generated by the shape factor of the up-

stream reservoir (Hertel et al. 2008, Sirakov et al. 2005)

and the boundary conditions along the two side glass

windows. In a second step 3D viscoelastic computations
need to be performed with selected constitutive equa-

tions at high rates (Dhole et al. 2009; Likhtman and

Graham 2003; Wagner et al. 2005; Wagner et al. 2008).
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Table 1 Molecular characteristics of PS 648

Density Density Number-averaged Weight-averaged Z-averaged Glass transition
at 23oC at 200oC molecular mass Mn molecular mass Mw molecular mass Mz temperature
(103kg.m−3) (103kg.m−3) (kg.mol−1) (kg.mol−1) (kg.mol−1) (oC)

1.047 0.973 136 296 460 100

Table 2 Coefficients of the WLF equation for PS 648

C1 C2 T0

(oK) (oC)

5.02 122.4 180

Table 3 Relaxation spectrum for PS 648 at 180oC

θi (s) Gi (Pa)

7.63 10−3 8.86 104

1.08 10−1 5.35 104

6.72 10−1 2.09 104

1.35 1.08 105

4.93 8.40 103

1.70 101 1.71 103

3.81 101 5.02 102

1.79 102 9.31 101

Table 4 Parameters identified at 180oC for the Marrucci
and Ianniruberto constitutive equation

θi (s) Gi (Pa) β θri
(s) b

7.63 10−3 8.86 104 0.95 2.00 10−3 5
1.08 10−1 5.35 104 0.95 1.69 10−2 5
6.72 10−1 2.09 104 0.95 7.28 10−2 5
1.35 1.08 105 0.95 1.27 10−1 10
4.93 8.40 103 0.95 3.58 10−1 10
1.70 101 1.71 103 0.95 9.65 10−1 10
3.81 101 5.02 102 0.95 1.60 20
1.79 102 9.31 101 0.95 5.52 30
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Fig. 1 Master curves of the complex modulus at 180oC
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Fig. 2 Master curves of the complex viscosity at 180oC, capillary viscosity measurements are superimposed
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Fig. 4 First set on non linear parameters(β = 1, b = 66, θe = 10−5s), comparison between experimental and computed
viscosity: (a) steady shear behaviour, (b) elongational viscosity
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Fig. 5 Second set on non linear parameters (β = 0.92, bi = (10, 10, 10, 10, 10, 10, 20, 30), θe = 10−5s), comparison between
experimental and computed viscosity: (a) steady shear behaviour, (b) elongational viscosity
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Fig. 6 Geometry of the transparent die

−0.016 −0.014 −0.012 −0.01 −0.008 −0.006
0

0.02

0.04

0.06

0.08

0.1

0.12

Position (m)

V
el

oc
ity

 (
m

.s
−

1 )

 

 

Measurement 0.70 g.s−1

Measurement 0.65 g.s−1

Measurement 0.60 g.s−1

Measurement 0.55 g.s−1

Measurement 0.50 g.s−1

Measurement 0.45 g.s−1

Measurement 0.40 g.s−1

Measurement 0.35 g.s−1

Measurement 0.30 g.s−1

Measurement 0.25 g.s−1

Measurement 0.20 g.s−1

Measurement 0.15 g.s−1

Fig. 7 Velocity field along the flow symmetry axis for various flow rates

−0.016 −0.014 −0.012 −0.01 −0.008 −0.006
0

2

4

6

8

10

12

14

16

18

20

Position (m)

E
lo

ng
at

io
n 

ra
te

 (
s−

1 )

 

 

Measurement 0.70 g.s−1

Measurement 0.65 g.s−1

Measurement 0.60 g.s−1

Measurement 0.55 g.s−1

Measurement 0.50 g.s−1

Measurement 0.45 g.s−1

Measurement 0.40 g.s−1

Measurement 0.35 g.s−1

Measurement 0.30 g.s−1

Measurement 0.25 g.s−1

Measurement 0.20 g.s−1

Measurement 0.15 g.s−1
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Fig. 9 Typical flow induced birefringence pattern (temperature 180oC, flow rate 0.25g/s)
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Fig. 10 Elongational stress along the symmetry axis derived from flow induced birefringence experiments at various flow rates
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Fig. 11 Comparison of experimental and computed stress field along the symmetry axis using the set of non linear parameters
identified previously from rheology data (β = 0.92, bi = (10, 10, 10, 10, 10, 10, 20, 30), θe = 10−5s)
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Fig. 12 Comparison of experimental and computed stress field along the symmetry axis using the new set of non linear
parameters (table 4)
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Fig. 13 Comparison between experimental and computed viscosity curves with the new set of non linear parameters (table
4); (a) shear viscosity; (b) elongation viscosity


