H. Amirshaghaghi, A. Zamaniyan, H. Ebrahimi, and M. Zarkesh, Numerical simulation of methane partial oxidation in the burner and combustion chamber of autothermal reformer, Applied Mathematical Modelling, vol.34, issue.9, pp.2312-2322, 2010.
DOI : 10.1016/j.apm.2009.10.039

J. Rollier, J. Gonzalez-aguilar, G. Petitpas, A. Darmon, and L. Fulcheri, Experimental Study on Gasoline Reforming Assisted by Nonthermal Arc Discharge, Energy & Fuels, vol.22, issue.1, p.556, 2008.
DOI : 10.1021/ef700540v

URL : https://hal.archives-ouvertes.fr/hal-00505974

A. Lebouvier, F. Fresnet, F. Fabry, V. Boch, V. Rohani et al., Trap Regeneration Application, Energy & Fuels, vol.25, issue.3, pp.1034-1044, 2011.
DOI : 10.1021/ef101674r

URL : https://hal.archives-ouvertes.fr/hal-00617141

J. Rollier, G. Petitpas, J. Gonzalez-aguilar, A. Darmon, and L. Fulcheri, Thermodynamics and Kinetics Analysis of Gasoline Reforming Assisted by Arc Discharge, Energy & Fuels, vol.22, issue.3, pp.1888-1893, 2008.
DOI : 10.1021/ef700665f

URL : https://hal.archives-ouvertes.fr/hal-00505970

J. Gonzalez-aguilar, G. Petitpas, A. Lebouvier, J. Rollier, A. Darmon et al., Three Stages Modeling of n-Octane Reforming Assisted by a Nonthermal Arc Discharge, Energy & Fuels, vol.23, issue.10, p.4931, 2009.
DOI : 10.1021/ef900475x

URL : https://hal.archives-ouvertes.fr/hal-00481432

R. J. Kee, F. M. Rupley, and J. A. Miller, The Chemkin Thermodynamic Data Base, 1987.

V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: Fluid Dynamics, vol.4, issue.7, pp.1510-1520, 1992.
DOI : 10.1063/1.858424

M. Rehm, P. Seifert, and B. Meyer, Theoretical and numerical investigation on the EDC-model for turbulence???chemistry interaction at gasification conditions, Computers & Chemical Engineering, vol.33, issue.2, pp.402-407, 2009.
DOI : 10.1016/j.compchemeng.2008.11.006

K. J. Puolakka, S. Juutilainen, and A. O. Krause, Combined CO2 reforming and partial oxidation of n-heptane on noble metal zirconia catalysts, Catalysis Today, vol.115, issue.1-4, pp.217-221, 2006.
DOI : 10.1016/j.cattod.2006.02.034

A. E. Lutz, R. W. Bradshaw, L. Bromberg, and A. Rabinovich, Thermodynamic analysis of hydrogen production by partial oxidation reforming, International Journal of Hydrogen Energy, vol.29, issue.8, pp.809-816, 2004.
DOI : 10.1016/j.ijhydene.2003.09.015

M. Benilov and G. Naidis, Modeling of hydrogen-rich gas production by plasma reforming of hydrocarbon fuels, International Journal of Hydrogen Energy, vol.31, issue.6, pp.769-774, 2006.
DOI : 10.1016/j.ijhydene.2005.06.018

F. Maroteaux and L. Noel, Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling, Combustion and Flame, vol.146, issue.1-2, pp.246-267, 2006.
DOI : 10.1016/j.combustflame.2006.03.006

N. Peters, G. Paczko, R. Seiser, and K. Seshadri, Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane, Combustion and Flame, vol.128, issue.1-2, pp.38-59, 2002.
DOI : 10.1016/S0010-2180(01)00331-5

T. J. Held, A. J. Marchese, and F. L. Dryer, A Semi-Empirical Reaction Mechanism for n-Heptane Oxidation and Pyrolysis, Combustion Science and Technology, vol.17, issue.1-6, pp.107-146, 1997.
DOI : 10.1080/00102209108951759

S. Liu, J. C. Hewson, J. H. Chen, and H. Pitsch, Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow, Combustion and Flame, vol.137, issue.3, pp.320-339, 2004.
DOI : 10.1016/j.combustflame.2004.01.011

S. Tanaka, F. Ayala, and J. C. Keck, A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine, Combustion and Flame, vol.133, issue.4, pp.467-481, 2003.
DOI : 10.1016/S0010-2180(03)00057-9

D. Nardo, A. Calchetti, G. Giammartini, S. Mongibello, G. Mongiello et al., Numerical Analysis of Liquid Fuel and Coal Water Slurry Combustion in an Innovative Reactor, 2009.