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A MONOLITHIC FINITE ELEMENT APPROACH TO COMPUTE
PERMEABILITYAT MICROSCOPIC SCALES IN LCM PROCESSES

L. Silva'*’, G. Puaux', M. Vincent', P. Laure'

! MINES ParisTech - CNRS UMR 7635 — CEMEF
*Faculdade de Engenharia da Universidade do Porto - DEMEGI

ABSTRACT: In this paper, a numerical approach for permeability determination at the mesoscopic and microscopic
scales is proposed. In an eulerian framework, the computational domain (corresponding to the elementary cell) is
composed of one single mesh, where the interface between the fibres (microscopic scale) or the yarns composing the
fabric (mesoscopic scale) and fluid is captured through a level set approach. At the microscopic scale, Stokes equations
are considered. At the mesoscopic scale, resolution of a coupled Stokes (in the fluid)-Darcy (in the yarn) flow is
necessary and is performed using also a mixed finite element technique, providing a single system of equations.
Stabilization of the Brinkman flow is attained using the P1+/P1 element. Results on permeability computation at the

microscopic scale, as well as sensitivity analysis, illustrate the methodology followed.
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1 INTRODUCTION

LCM (Liquid Composite Moulding) processes involve
the injection of a resin matrix in a mould where a fibrous
reinforcement has been placed. One of the main
problems arising in the process is the formation of
porosities as a consequence of the bad impregnation of
the resin. Simulation is used at the process scale to
optimise the process, but does not predict the distribution
of the porosity, since current macroscale models do not
include the multi-scale nature of the fibrous media
(Figure 1). Fibre reinforcements are composed of several
yarns that gather multiple fibres.
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Figure 1: Three-scale modelling of fibre reinforced media

At the macroscopic scale, one solves the Darcy equation
by considering a homogenecous porous media.
Nevertheless, permeability used at this scale may be
more accurately determined by using direct simulation at
the mesoscopic and microscopic scales on REV
(Representative Elementary Volumes), object of this

paper.

Hence, at the fibre scale yarn permeability can be
determined using an immersed volume technique and by
solving Stokes equations, by considering that fibres are
not permeable. At the yarn scale, a similar approach is
used, but Brinkman equations are solved in the whole
computational domain.

Computations have been performed using CIMLib, the
scientific computation library developed at CEMEF, on
which REM3D, a polymer and composite injection
moulding software is built from.

2 IMMERSED VOLUME TECHNIQUE

We consider the computational domain composed of
both the reinforcement (fibres or yarns) and the resin.
Thus, a multidomain problem is considered, with two
phases, solid and fluid. A monolithic approach [1] has
been chosen: computation is performed using a single
mesh that includes all the phases; interfaces between
them are known implicitly through a distance function o
to these interfaces (Figure 2).

2.1 MIXTURE LAW

Material properties, such as density or viscosity, must be
computed on the whole computational domain. A linear
mixture law for the viscosity has been used:

n=nH,(a)+n1-H,(a)
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where H,(a) is the modified Heaviside function

if a>e
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In these equations, 77 is the viscosity, @ is the distance
function to the fibre-fluid interface (positive inside the
fibre or yarn) and e is the half-thickness of the mixture
zone. The indexes s and f indicate the solid (fibre or
yarn) and fluid (resin) domains, respectively.

Figure 2: Example of computational domains (REVs) at
the micro (left) and meso (right) scales. In the left, the
micro-scale: red represents the fibre and blue the resin.
In the right, interfaces between yarns and resin are
represented through the isosurface of zero value of a on
the background mesh

2.2 MESH ADAPTATION

To guarantee a good accuracy on the description of the
fibre-resin and yarn-resin interfaces, mesh control is
necessary. Thus, anisotropic mesh refinement at the
interface level allows the control of the number of
elements in the thickness e, as well as their orientation.
To do that, an anisotropic metrics field is computed on
the mesh, defining the mesh size in each spatial direction
and is given to the mesher, incorporated in our solver.
Being our interface defined by the gradients of a distance
function, the metrics field better adapted is

M =m0 Da” )+ &1 3)

where [ is the identity tensor, and the mesh sizes in
directions /@ and /@ "are 1/v(m’|al’+£) and /€. If we
adapt the mesh only in the thickness e, the metrics field
can be redefined as

&l if la|>e
— 2 T
M= (ﬁ—sj Dd) |]2a +e’ 1 if la|<e @
¢ [Aa

where N is the number of desired layers in the thickness
e. In this thickness, we have N elements of size e¢/N in
the direction /& and the default mesh size 1/£ in the
direction /@ . Figure 3 illustrates adaptation at the fibre-
resine interface.
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Figure 3: Example of anisotropic mesh adaptation at the
fibre-resin interface.

3 FLOW EQUATIONS
3.1 BRINKMAN EQUATIONS

Darcy and Brinkman equations model flow through a
porous media like flow through an equivalent continuous
homogeneous media [2].

In the following, we suppose that the reinforcement is
static and non deformable, the fluid is Newtonian, its
density is constant and the media is saturated. Continuity
equation, supposing that velocity at the pore surface is
Zero, is

Olv=0 4)

where v is the average velocity field. Averaging
conservation of momentum leads to the Brinkman
equation

—%v+l]Av—¢E|p=0 (6)

with p the pressure, K the permeability and ¢ the
porosity.

3.2 THE MICROSCOPIC SCALE

At the fibre-resin scale, we consider that (/7/K)=0 in both
the fiber and the resin, and we are led to the Stokes
equations in the whole computational domain

Hv Op=0 . 0
{EIIEZO - ™

Rigidity of the solid (fibre) part is taken into account
through a penalisation scheme, by imposing 77,=/ 0317/-
[31.

3.3 THE MESOSCOPIC SCALE

At the yarn-resin scale, we consider that (//K),=0 in the
resin and that there is no viscous term 74v=0 in the
yarn. Thus, we are led to the Stokes equations in the
fluid domain and to the Darcy one in the solid. Through
our mixture law, one can solve one single problem,
Brinkmans’, in the whole computational domain

J
K
=0
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3.4 NUMERICAL RESOLUTION

Brinkmans’ problem (8) is solved using a mixed finite
element method. The element chosen is the P1+/PI,
which has a linear approximation in pressure and also a
linear one in velocity, enriched with a pyramidal bubble
function. This enrichment stabilises the formulation for
both the Stokes and the Darcy cases. Indeed, the discrete
weak formulation of (8) is, after part integration and
using the bubble function properties: find
(Vh+bh,ph)D(VhUBh,Ph), such that

j2/7h£(vh):€(wh)_ J.PhD Gy, + I[%) (Vh +bh)wh =0
Q, Q, Q, h

J.Zﬂhf(bh)35(b'h)_ J-PhD '), + J(ﬂ) (v + b3 )6, =0 )

K h
Q, Q, Q,

- J.th Oy, = J.th b, =0
Qh Qh

Owy,+b,p ) OV, LB, Py). V3B, P, are the discrete
functional spaces associated to the linear velocity and
pressure, and to the bubble function. For more details on
these spaces, see [1]. The element contribution to the
linear system arising can be written in the matrix form:

Avv Avb Avp Vp 0
T —
Avb Abb Abp bh =10 ( 1 0)

Avp ! Abp ! 0 Ph
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Bubble condensation provides a system in the main

variables v, and p;:
-1, T -1
Ay = Ap Ay Ay Avp = Ay Ay, Abp vi|_|O
T _ T, -1, T _ T, - “lo (11)
Ay, A, Ay Ay Ay, Ay, Ay Py
where
-1, T
T
T, -, T
_Abp Ay, Ay

-1
= Ay Ay, Abp
T, -l
_Abp Ay, Abp

is the stabilisation matrix. The linear system resulting
from the discrete formulation is solved using a conjugate
residual method and an ILU preconditioning, using the
PETSC library, to obtain the nodal distributions of the
velocity and pressure fields.

4 PERMEABILITY COMPUTATION

Once velocity and pressure have been computed,
permeability can be determined (at the micro or meso
scales). Three different techniques are most often used:
the capillary model, models arising from the
hydrodynamic lubrication theory and the cell model.
Hydrodynamic lubrication theory models suppose the
fibrous media as a regular cylinder spacing geometry and
compute an analytical solution for the Stokes equations
inside this REV (Representative Elementary Volume).
The most popular one for the transverse permeability of
the array of cylinders is Gebart’s expression [4]:

5/2
KD:C][ ul —1} R? (12)

where R is the fibre radius, ¢, is the fibre volume
fraction, v/ is the maximum fibre volume fraction and
C1 a constant value, both defined for a square array of
fibres.

In the cell model, one may consider any fibre array
geometry (a cell), and Stokes equations are solved on the
considered cell. Idris [5] gives a review on the numerical
results obtained for the transverse permeability on
triangular and square arrays of fibres, for Newtonian and
pseudoplastic matrix fluids.

In our case, Darcy’s equation, defining permeability, will
be directly considered. Thus,

where (v) and (/p) are the averaged velocity and
pressure gradient fields (only considered in the fluid
domain). Thus, using equation (2)

[(-r@)

Q
(1-H(@)op
Q

K =ng (14)

This expression allows permeability computation on
whatever REV, and its results are compared with
Gebart’s relation in the following, at the microscopic
scale.

S5 RESULTS AND DISCUSSION

We consider a regular array of fibres (Figure 4). A
pressure gradient is imposed from left to right and the
normal velocity in the upper and lower planes is zero.
Inside the fibres, velocity is also zero. A sticky contact
condition between fibres and the fluid is implicitly taken
into account through the formulation. Three different
sizes of REV where considered and the non-dimensional
values of the transverse permeability obtained were: K(4
fibres)=0.0088, K(9 fibres)=0.0086, K(4 fibres)=0.0086.
Thus, one may consider that the 4-fibre geometry is the
REV, for a square geometry.

Figure 4: Different sizes of RVE for permeability
computation

Sensitivity to the mesh size has been studied. Actually,
two different meshes have been generated: one isotropic
and another anisotropic adapted at the interface (Figure
5). For an identical accuracy on the permeability,
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anisotropic meshes have 10 times less elements than
isotropic meshes (Figure 6).

Figure 5: Mesh sensitivity analysis - Adapted meshes, on
the left isotropic and on the right anisotropic (in red, the
fibre-fluid interface)
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Figure 6: Mesh sensitivity analysis — Evolution of the
permeability computed value (in red), for a total number
of elements that vary from 5000 to 200000 in the
isotropic case (left) and from 5000 to 20000 in the
anisotropic one (right); in green, Gebart's value for the
transverse permeability

Different types of arrays have been considered (Figure
7). Differences of 17% between the two transverse
permeabilities have been found for geometry a, 5% for
geometry ¢ and 1.7% for geometry b (reason for
choosing this REV on the different tests performed). In
fact, for multidomain computation, orientation of the
REV and size is important.
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Figure 7: REV configurations studied.

Finally, to validate permeability computation, we study
different fibre rates and compare our results with
references from the literature [5]. Figure 8 shows that
results are in good agreement (our method -
“monolithique”).

6 CONCLUSIONS

Simulation of LCM processes at the macroscopic scale
must include a relevant permeability tensor. To

determine this tensor, permeability at the microscopic
and then at the mesoscopic scale must be computed.

In this paper, a monolithic technique has been detailed to
provide computation at both scales for whatever
geometries of REV. Computations at the microscopic
scale have been undertaken, showing a good agreement
with the theoretical framework of permeability
determination. Sensitivity analysis concerning mesh type
and array size and type has been shown.

Current work includes the same testing at the
mesoscopic scale using a similar approach, as well as the
non saturated case (three-phase flow).
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Figure 8: Evolution of the transverse permeability with
the fibre volume fraction, our results are referenced as
“monolithique”.
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