Determination of Critical Properties and Acentric Factors of Pure Compounds Using the Artificial Neural Network Group Contribution Algorithm - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Chemical and Engineering Data Année : 2011

Determination of Critical Properties and Acentric Factors of Pure Compounds Using the Artificial Neural Network Group Contribution Algorithm

(1) , (2) , (3) , (3)
1
2
3
Ali Eslamimanesh
Amir H. Mohammadi
  • Fonction : Auteur
  • PersonId : 915863
Dominique Richon
  • Fonction : Auteur
  • PersonId : 915941

Résumé

In this article, artificial neural network group contribution (ANN-GC) method is applied to calculate and estimate critical properties including the critical pressure, temperature, and volume and acentric factors of pure compounds. About 1700 chemical compounds from various chemical families have been investigated to propose a comprehensive and predictive model. Using this dedicated model, we obtain satisfactory results quantified by the following absolute average deviations of the calculated and estimated properties from existing experimental values: 1.1 % for critical pressure, 0.9 % for critical temperature, 1.4 % for critical volume, and 3.7 % for acentric factor.
Fichier non déposé

Dates et versions

hal-00614242 , version 1 (10-08-2011)

Identifiants

Citer

Farhad Gharagheizi, Ali Eslamimanesh, Amir H. Mohammadi, Dominique Richon. Determination of Critical Properties and Acentric Factors of Pure Compounds Using the Artificial Neural Network Group Contribution Algorithm. Journal of Chemical and Engineering Data, 2011, 56 (5), pp.2460-2476. ⟨10.1021/je200019g⟩. ⟨hal-00614242⟩
81 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More