M. Ni, M. K. Leung, D. Y. Leung, and K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable and Sustainable Energy Reviews, vol.11, issue.3, pp.401-425, 2007.
DOI : 10.1016/j.rser.2005.01.009

A. Kudo, Recent progress in the development of visible light-driven powdered photocatalysts for water splitting, International Journal of Hydrogen Energy, vol.32, issue.14, pp.2673-2678, 2007.
DOI : 10.1016/j.ijhydene.2006.09.010

E. Franck and . Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chemistry of Matterials, vol.20, pp.35-54, 2008.

A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., vol.238, issue.122, pp.253-278, 2009.
DOI : 10.1039/B800489G

J. Nowotny, T. Bak, M. K. Nowotny, and L. R. Sheppard, Titanium dioxide for solar-hydrogen I. Functional properties???, International Journal of Hydrogen Energy, vol.32, issue.14, pp.2609-2629, 2007.
DOI : 10.1016/j.ijhydene.2006.09.004

A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol.44, issue.5358, pp.37-38, 1972.
DOI : 10.1038/238037a0

Y. Suzuki, M. Berger, D. D. Elia, P. Ilbizian, C. Beauger et al., Synthesis and microstructure of a novel TiO 2 aerogel-TiO 2 nanowire composite, Nano, vol.3, issue.4, pp.1-7, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00367981

T. Kasuga, M. Hiramatsu, A. Hoson, K. Toru-sekino, and . Niihara, Formation of Titanium Oxide Nanotube, Langmuir, vol.14, issue.12, pp.3160-3163, 1998.
DOI : 10.1021/la9713816

Y. Suzuki, P. Benoit, D. D. Pichon, C. Elia, S. Beauger et al., Preparation and microstructure of titanate nanowire thin films by spray Layer-by-Layer assembly method, Journal of the Ceramic Society of Japan, vol.117, issue.1363, pp.381-394, 2009.
DOI : 10.2109/jcersj2.117.381

URL : https://hal.archives-ouvertes.fr/hal-00482784

A. Bisson, A. Rigacci, D. Lecomte, E. Rodier, and P. Achard, Drying of Silica Gels to Obtain Aerogels:Phenomenology and Basic Techniques, Drying Technology, vol.72, issue.4, pp.593-628, 2003.
DOI : 10.1080/07373939908917541

URL : https://hal.archives-ouvertes.fr/hal-00529688

A. S. Marfunin, Spectroscopy, luminescence and radiation centers in minerals, 1979.
DOI : 10.1007/978-3-642-67112-8

J. I. Pankove, Optical Processes in Semiconductors, Journal of The Electrochemical Society, vol.119, issue.5, pp.34-44, 1971.
DOI : 10.1149/1.2404256

T. Beuvier, M. Richard-plouet, and L. Brohan, Accurate Methods for Quantifying the Relative Ratio of Anatase and TiO 2 (B) Nanoparticles, J. Chem. Phys. C, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00431910

. Au, anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion, Journal of Catalysis, vol.269, issue.21, pp.179-190, 2010.

J. Jitputti, S. Pavasupree, Y. Suzuki, and S. Yoshikawa, Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method, Journal of Solid State Chemistry, vol.180, issue.5, pp.1743-1749, 2007.
DOI : 10.1016/j.jssc.2007.03.018

M. Ashokkumar, An overview on semiconductor particulate systems for photoproduction of hydrogen, International Journal of Hydrogen Energy, vol.23, issue.6, pp.427-438, 1998.
DOI : 10.1016/S0360-3199(97)00103-1

T. Sreethawong, Y. Suzuki, and S. Yoshikawa, Photocatalytic evolution of hydrogen over nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol???gel process, Catalysis Communications, vol.6, issue.2, pp.119-124, 2005.
DOI : 10.1016/j.catcom.2004.11.011

G. Schmid, M. Baumle, M. Greekens, I. Heim, C. Osemann et al., Current and future applications of nanoclusters, Chemical Society Reviews, vol.28, issue.3, pp.179-185, 1999.
DOI : 10.1039/a801153b

M. Koelsch, S. Cassaignon, J. F. Guillemoles, and J. P. Jolivet, Comparison of optical and electrochemical properties of anatase and brookite TiO 2 synthesized by the sol?gel method, Thin Solid Films, pp.403-404312, 2002.

S. Monticone, R. Tufeu, A. V. Kanaev, E. Scolan, and C. Sanchez, Quantum size effect in TiO 2 nanoparticles: does it exist?, Applied Surface Science, pp.162-163565, 2000.

K. M. Reddy, S. V. Manorama, and A. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Materials Chemistry and Physics, vol.78, issue.1, pp.239-245, 2002.
DOI : 10.1016/S0254-0584(02)00343-7

R. Zallen and M. P. Moret, The optical absorption edge of brookite TiO2, Solid State Communications, vol.137, issue.3, pp.154-157, 2006.
DOI : 10.1016/j.ssc.2005.10.024

H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and F. Levy, anatase thin films, Journal of Applied Physics, vol.75, issue.4, pp.2042-2047, 1994.
DOI : 10.1063/1.356306

A. L. Linsebigler, . Guangquan, J. T. Lu, and . Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, vol.95, issue.3, pp.735-758, 1995.
DOI : 10.1021/cr00035a013

S. H. Tolbert, A. B. Herhold, C. S. Johnson, and A. P. , Comparison of Quantum Confinement Effects on the Electronic Absorption Spectra of Direct and Indirect Gap Semiconductor Nanocrystals, Physical Review Letters, vol.73, issue.24, pp.3266-3269, 1994.
DOI : 10.1103/PhysRevLett.73.3266

A. J. Nozik and R. Memming, Physical Chemistry of Semiconductor???Liquid Interfaces, The Journal of Physical Chemistry, vol.100, issue.31, pp.13061-13078, 1996.
DOI : 10.1021/jp953720e

J. Jitputti, Y. Suzuki, and S. Yoshikawa, Synthesis of TiO 2 nanowires and their photocatalytic activity for hydrogen evolution, Catalysis Communications, vol.9, 2008.

T. Ohsaka, F. Izumi, and Y. Fujiki, Raman spectrum of anatase, TiO2, Journal of Raman Spectroscopy, vol.4, issue.6, p.321, 1978.
DOI : 10.1002/jrs.1250070606

F. Mouna-ben-yahia, T. Lemoigno, J. Beuvier, M. Filhol, L. Richard-plouet et al., Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations, The Journal of Chemical Physics, vol.130, issue.20, p.204501, 2009.
DOI : 10.1063/1.3130674

R. I. Bickley, T. Gonzalez-carreno, J. S. Lees, L. Palmisano, and R. J. Tilley, A structural investigation of titanium dioxide photocatalysts, Journal of Solid State Chemistry, vol.92, issue.1, p.178, 1991.
DOI : 10.1016/0022-4596(91)90255-G

. Huang-lin, C. Kuo, C. Kuo, J. Liu, C. Chao et al., A highly active bi-crystalline photocatalyst consisting of TiO 2 (B) nanotube and anatase particle for producing H 2 gas from neat ethanol, Catalysis Letters, vol.113, issue.12, pp.7-12, 2007.

J. Jitputti, S. Pavasupree, Y. Suzuki, and S. Yoshikawa, Evolution, Japanese Journal of Applied Physics, vol.47, issue.1, pp.751-756, 2008.
DOI : 10.1143/JJAP.47.751

J. Chiu-hsun-lin, C. Chao, J. Liu, F. Chang, and . Wang, Effect of calcination temperature on the structure of a Pt (B) nanofiber and its photocatalytic activity in generating H 2, Langmuir, vol.24, issue.217, pp.9907-9915, 2008.

G. Dagan and M. Tomkiewicz, Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments, The Journal of Physical Chemistry, vol.97, issue.49, pp.12651-12655, 1993.
DOI : 10.1021/j100151a001

V. Augugliaro, S. Coluccia, V. Loddo, L. Marchese, G. Martra et al., Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation, Applied Catalysis B: Environmental, vol.20, issue.1, pp.15-27, 1999.
DOI : 10.1016/S0926-3373(98)00088-5

L. Znaidi, R. Séraphimova, J. F. Bocquet, C. Colbeau-justin, and C. Pommier, A semi-continuous process for the synthesis of nanosize TiO2 powders and their use as photocatalysts, Materials Research Bulletin, vol.36, issue.5-6, pp.811-825, 2001.
DOI : 10.1016/S0025-5408(00)00482-7

T. Sreethawong and S. Yoshikawa, Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2TiO2 prepared by single-step sol???gel process with surfactant template, International Journal of Hydrogen Energy, vol.31, issue.6, pp.786-796, 2006.
DOI : 10.1016/j.ijhydene.2005.06.015

P. Pichat, M. N. Mozzanega, J. Didier, and J. Hermann, Pt content and temperature effects on the photocatalytic H2 production from aliphatic alcohols over Pt-TiO 2, New journal of chemistry, vol.6, issue.11, pp.559-564, 1982.

B. Sun, A. V. Vorontsov, and P. G. Smirniotis, in Phenol Photocatalytic Oxidation, Langmuir, vol.19, issue.8, pp.3151-3156, 2003.
DOI : 10.1021/la0264670

. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO 2 catalyst, Water Research, vol.38, issue.13, pp.3001-3008, 2004.

M. Moonsiri, P. Rangsunvigit, S. Chavadej, and E. Gulari, Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products, Chemical Engineering Journal, vol.97, issue.2-3, pp.2-3241, 2004.
DOI : 10.1016/j.cej.2003.05.003

F. B. Li and X. Z. Li, The enhancement of photodegradation efficiency using Pt???TiO2 catalyst, Chemosphere, vol.48, issue.10, pp.1103-1111, 2002.
DOI : 10.1016/S0045-6535(02)00201-1

C. A. Emilio, M. I. Litter, M. Kunst, M. Bouchard, and C. Colbeau-justin, Photocatalysts Related to Charge-Carrier Dynamics, Langmuir, vol.22, issue.8, pp.3606-3613, 2006.
DOI : 10.1021/la051962s

S. Sakulkhaemaruethai and T. Sreethawong, Synthesis of mesoporous-assembled TiO2 nanocrystals by a modified urea-aided sol-gel process and their outstanding photocatalytic H2 production activity, International Journal of Hydrogen Energy, vol.36, issue.11, pp.6553-6559, 2011.
DOI : 10.1016/j.ijhydene.2011.03.005