Clustering and Modeling of Network level Traffic States based on Locality Preservative Non-negative Matrix Factorization - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2011

Clustering and Modeling of Network level Traffic States based on Locality Preservative Non-negative Matrix Factorization

(1) , (1)
1
Yufei Han
  • Fonction : Auteur
  • PersonId : 913264
Fabien Moutarde

Résumé

In this paper, we propose to cluster and model network-level traffic states based on a geometrical weighted similarity measure of network-level traffic states and locality preservative non-negative matrix factorization. The geometrical weighted similarity measure makes use of correlation between neighboring roads to describe spatial configurations of global traffic patterns. Based on it, we project original high-dimensional network-level traffic information into a feature space of much less dimensionality through the matrix factorization method. With the obtained low-dimensional representation of global traffic information, we can describe global traffic patterns and the evolution of global traffic states in a flexible way. The experiments prove validity of our method for the case of large-scale traffic network.
Fichier principal
Vignette du fichier
clustering-traffic-NMF_ITS-Europe2011_FINAL.pdf (1.9 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00638074 , version 1 (04-11-2011)

Identifiants

  • HAL Id : hal-00638074 , version 1

Citer

Yufei Han, Fabien Moutarde. Clustering and Modeling of Network level Traffic States based on Locality Preservative Non-negative Matrix Factorization. 8th Intelligent Transport Systems (ITS) European Congress, Jun 2011, Lyon, France. ⟨hal-00638074⟩
129 Consultations
109 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More